Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
161
25
162
163
26
164
165
27
166
167
28
168
169
29
170
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(30)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div254
"
type
="
section
"
level
="
1
"
n
="
87
">
<
p
>
<
s
xml:id
="
echoid-s4278
"
xml:space
="
preserve
">
<
pb
o
="
30
"
file
="
0171
"
n
="
171
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
pra demonſtratum eſt, ita eſſe cylindrum, uel cylindri por-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0171-01
"
xlink:href
="
note-0171-01a
"
xml:space
="
preserve
">8. huius</
note
>
tionem ad priſina, cuius baſis rectilinea figura, & </
s
>
<
s
xml:id
="
echoid-s4279
"
xml:space
="
preserve
">æqua-
<
lb
/>
lis altitudo. </
s
>
<
s
xml:id
="
echoid-s4280
"
xml:space
="
preserve
">ergo per conuerſionem rationis, ut circulus,
<
lb
/>
uel ellipſis ad portiones, ita conus, uel coni portio ad por-
<
lb
/>
tiones ſolidas. </
s
>
<
s
xml:id
="
echoid-s4281
"
xml:space
="
preserve
">quare conus uel coni portio ad portiones
<
lb
/>
ſolidas maiorem habet proportionem, quam g e ad e f: </
s
>
<
s
xml:id
="
echoid-s4282
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4283
"
xml:space
="
preserve
">
<
lb
/>
diuidendo, pyramis ad portiones ſolidas maiorem pro-
<
lb
/>
portionem habet, quam g f ad f e. </
s
>
<
s
xml:id
="
echoid-s4284
"
xml:space
="
preserve
">ſiat igitur q f ad f e
<
lb
/>
ut pyramis ad dictas portiones. </
s
>
<
s
xml:id
="
echoid-s4285
"
xml:space
="
preserve
">Itaque quoniam à cono
<
lb
/>
uel coni portione, cuius grauitatis centrum eſt f, aufer-
<
lb
/>
tur pyramis, cuius centrum e; </
s
>
<
s
xml:id
="
echoid-s4286
"
xml:space
="
preserve
">reliquæ magnitudinis,
<
lb
/>
quæ ex ſolidis portionibus conſtat, centrum grauitatis
<
lb
/>
erit in linea e f protracta, & </
s
>
<
s
xml:id
="
echoid-s4287
"
xml:space
="
preserve
">in puncto q. </
s
>
<
s
xml:id
="
echoid-s4288
"
xml:space
="
preserve
">quod fieri
<
lb
/>
non poteft: </
s
>
<
s
xml:id
="
echoid-s4289
"
xml:space
="
preserve
">eſt enim centrum grauitatis intra. </
s
>
<
s
xml:id
="
echoid-s4290
"
xml:space
="
preserve
">Conſtat
<
lb
/>
igitur coni, uel coni portionis grauitatis centrum eſſe pun
<
lb
/>
ctum e. </
s
>
<
s
xml:id
="
echoid-s4291
"
xml:space
="
preserve
">quæ omnia demonſtrare oportebat.</
s
>
<
s
xml:id
="
echoid-s4292
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div258
"
type
="
section
"
level
="
1
"
n
="
88
">
<
head
xml:id
="
echoid-head95
"
xml:space
="
preserve
">THEOREMA XIX. PROPOSITIO XXIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4293
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Qvodlibet</
emph
>
fruſtum à pyramide, quæ
<
lb
/>
triangularem baſim habeat, abſciſſum, diuiditur
<
lb
/>
in tres pyramides proportionales, in ea proportio
<
lb
/>
ne, quæ eſt lateris maioris baſis ad latus minoris
<
lb
/>
ipſi reſpondens.</
s
>
<
s
xml:id
="
echoid-s4294
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4295
"
xml:space
="
preserve
">Hoc demonſtrauit Leonardus Piſanus in libro, qui de-
<
lb
/>
praxi geometriæ inſcribitur. </
s
>
<
s
xml:id
="
echoid-s4296
"
xml:space
="
preserve
">Sed quoniam is adhucim-
<
lb
/>
preſſus non eſt, nos ipſius demonſtrationem breuíter
<
lb
/>
perſtringemus, rem ipſam ſecuti, non uerba. </
s
>
<
s
xml:id
="
echoid-s4297
"
xml:space
="
preserve
">Sit fru-
<
lb
/>
ſtum pyramidis a b c d e f, cuíus maior baſis triangulum
<
lb
/>
a b c, minor d e f: </
s
>
<
s
xml:id
="
echoid-s4298
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4299
"
xml:space
="
preserve
">iunctis a e, e c, c d, per line-
<
lb
/>
as a e, e c ducatur planum ſecans fruſtum: </
s
>
<
s
xml:id
="
echoid-s4300
"
xml:space
="
preserve
">itemque per
<
lb
/>
lineas e c, c d; </
s
>
<
s
xml:id
="
echoid-s4301
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4302
"
xml:space
="
preserve
">per c d, d a alia plana ducantur, quæ,
<
lb
/>
diuident fruſtum in tres pyramides a b c e, a d c e, d e f c.</
s
>
<
s
xml:id
="
echoid-s4303
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>