Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
< >
page |< < (30) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div254" type="section" level="1" n="87">
          <p>
            <s xml:id="echoid-s4278" xml:space="preserve">
              <pb o="30" file="0171" n="171" rhead="DE CENTRO GRAVIT. SOLID."/>
            pra demonſtratum eſt, ita eſſe cylindrum, uel cylindri por-
              <lb/>
              <note position="right" xlink:label="note-0171-01" xlink:href="note-0171-01a" xml:space="preserve">8. huius</note>
            tionem ad priſina, cuius baſis rectilinea figura, & </s>
            <s xml:id="echoid-s4279" xml:space="preserve">æqua-
              <lb/>
            lis altitudo. </s>
            <s xml:id="echoid-s4280" xml:space="preserve">ergo per conuerſionem rationis, ut circulus,
              <lb/>
            uel ellipſis ad portiones, ita conus, uel coni portio ad por-
              <lb/>
            tiones ſolidas. </s>
            <s xml:id="echoid-s4281" xml:space="preserve">quare conus uel coni portio ad portiones
              <lb/>
            ſolidas maiorem habet proportionem, quam g e ad e f: </s>
            <s xml:id="echoid-s4282" xml:space="preserve">& </s>
            <s xml:id="echoid-s4283" xml:space="preserve">
              <lb/>
            diuidendo, pyramis ad portiones ſolidas maiorem pro-
              <lb/>
            portionem habet, quam g f ad f e. </s>
            <s xml:id="echoid-s4284" xml:space="preserve">ſiat igitur q f ad f e
              <lb/>
            ut pyramis ad dictas portiones. </s>
            <s xml:id="echoid-s4285" xml:space="preserve">Itaque quoniam à cono
              <lb/>
            uel coni portione, cuius grauitatis centrum eſt f, aufer-
              <lb/>
            tur pyramis, cuius centrum e; </s>
            <s xml:id="echoid-s4286" xml:space="preserve">reliquæ magnitudinis,
              <lb/>
            quæ ex ſolidis portionibus conſtat, centrum grauitatis
              <lb/>
            erit in linea e f protracta, & </s>
            <s xml:id="echoid-s4287" xml:space="preserve">in puncto q. </s>
            <s xml:id="echoid-s4288" xml:space="preserve">quod fieri
              <lb/>
            non poteft: </s>
            <s xml:id="echoid-s4289" xml:space="preserve">eſt enim centrum grauitatis intra. </s>
            <s xml:id="echoid-s4290" xml:space="preserve">Conſtat
              <lb/>
            igitur coni, uel coni portionis grauitatis centrum eſſe pun
              <lb/>
            ctum e. </s>
            <s xml:id="echoid-s4291" xml:space="preserve">quæ omnia demonſtrare oportebat.</s>
            <s xml:id="echoid-s4292" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div258" type="section" level="1" n="88">
          <head xml:id="echoid-head95" xml:space="preserve">THEOREMA XIX. PROPOSITIO XXIII.</head>
          <p>
            <s xml:id="echoid-s4293" xml:space="preserve">
              <emph style="sc">Qvodlibet</emph>
            fruſtum à pyramide, quæ
              <lb/>
            triangularem baſim habeat, abſciſſum, diuiditur
              <lb/>
            in tres pyramides proportionales, in ea proportio
              <lb/>
            ne, quæ eſt lateris maioris baſis ad latus minoris
              <lb/>
            ipſi reſpondens.</s>
            <s xml:id="echoid-s4294" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4295" xml:space="preserve">Hoc demonſtrauit Leonardus Piſanus in libro, qui de-
              <lb/>
            praxi geometriæ inſcribitur. </s>
            <s xml:id="echoid-s4296" xml:space="preserve">Sed quoniam is adhucim-
              <lb/>
            preſſus non eſt, nos ipſius demonſtrationem breuíter
              <lb/>
            perſtringemus, rem ipſam ſecuti, non uerba. </s>
            <s xml:id="echoid-s4297" xml:space="preserve">Sit fru-
              <lb/>
            ſtum pyramidis a b c d e f, cuíus maior baſis triangulum
              <lb/>
            a b c, minor d e f: </s>
            <s xml:id="echoid-s4298" xml:space="preserve">& </s>
            <s xml:id="echoid-s4299" xml:space="preserve">iunctis a e, e c, c d, per line-
              <lb/>
            as a e, e c ducatur planum ſecans fruſtum: </s>
            <s xml:id="echoid-s4300" xml:space="preserve">itemque per
              <lb/>
            lineas e c, c d; </s>
            <s xml:id="echoid-s4301" xml:space="preserve">& </s>
            <s xml:id="echoid-s4302" xml:space="preserve">per c d, d a alia plana ducantur, quæ,
              <lb/>
            diuident fruſtum in tres pyramides a b c e, a d c e, d e f c.</s>
            <s xml:id="echoid-s4303" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>