Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
161
25
162
163
26
164
165
27
166
167
28
168
169
29
170
171
30
172
173
31
174
175
32
176
177
33
178
179
34
180
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div242
"
type
="
section
"
level
="
1
"
n
="
84
">
<
p
>
<
s
xml:id
="
echoid-s3973
"
xml:space
="
preserve
">
<
pb
file
="
0160
"
n
="
160
"
rhead
="
FED. COMMANDINI
"/>
æqualibus baſibus, quorum axes cum baſibus æquales an
<
lb
/>
gulos faciant. </
s
>
<
s
xml:id
="
echoid-s3974
"
xml:space
="
preserve
">Dico ſolidum a b adſolidũ c d ita eſſe, ut axis
<
lb
/>
e f ad axem g h: </
s
>
<
s
xml:id
="
echoid-s3975
"
xml:space
="
preserve
">nam ſi axes ad planum baſis recti ſint, il-
<
lb
/>
lud perſpicue conſtat: </
s
>
<
s
xml:id
="
echoid-s3976
"
xml:space
="
preserve
">quoniam eadem linea, & </
s
>
<
s
xml:id
="
echoid-s3977
"
xml:space
="
preserve
">axem & </
s
>
<
s
xml:id
="
echoid-s3978
"
xml:space
="
preserve
">ſoli
<
lb
/>
di altitudinem determinabit. </
s
>
<
s
xml:id
="
echoid-s3979
"
xml:space
="
preserve
">Si uero ſintinclinati, à pun-
<
lb
/>
ctis e g ad ſubiectum planum perpendiculares ducantur
<
lb
/>
e k, g l: </
s
>
<
s
xml:id
="
echoid-s3980
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3981
"
xml:space
="
preserve
">iungantur f_k_, h l. </
s
>
<
s
xml:id
="
echoid-s3982
"
xml:space
="
preserve
">rurſus quoniam axes cum ba
<
lb
/>
ſibus æquales faciunt angulos, eodem modo demonſtrabi
<
lb
/>
tur, triangulum e f K triangulo g h l ſimile eſſe: </
s
>
<
s
xml:id
="
echoid-s3983
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3984
"
xml:space
="
preserve
">e k ad g l,
<
lb
/>
ut e f ad g h. </
s
>
<
s
xml:id
="
echoid-s3985
"
xml:space
="
preserve
">Solidum autem a b ad ſolidum c d eſt, ut
<
lb
/>
e K ad g l. </
s
>
<
s
xml:id
="
echoid-s3986
"
xml:space
="
preserve
">ergo & </
s
>
<
s
xml:id
="
echoid-s3987
"
xml:space
="
preserve
">ut axis e f ad axem g h. </
s
>
<
s
xml:id
="
echoid-s3988
"
xml:space
="
preserve
">quæ omnia de
<
lb
/>
monſtrare oportebat.</
s
>
<
s
xml:id
="
echoid-s3989
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3990
"
xml:space
="
preserve
">Ex iis quæ demonſtrata ſunt, facile conſtare
<
lb
/>
poteſt, priſmata omnia & </
s
>
<
s
xml:id
="
echoid-s3991
"
xml:space
="
preserve
">pyramides, quæ trian-
<
lb
/>
gulares baſes habent, ſiue in eiſdem, ſiue in æqua
<
lb
/>
libus baſibus conſtituantur, eandem proportio-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0160-01
"
xlink:href
="
note-0160-01a
"
xml:space
="
preserve
">15. quinti</
note
>
nem habere, quam altitudines: </
s
>
<
s
xml:id
="
echoid-s3992
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3993
"
xml:space
="
preserve
">ſi axes cum ba
<
lb
/>
ſibus æquales angulos contineant, ſimiliter ean-
<
lb
/>
dem, quam axes, habere proportionem: </
s
>
<
s
xml:id
="
echoid-s3994
"
xml:space
="
preserve
">ſunt
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0160-02
"
xlink:href
="
note-0160-02a
"
xml:space
="
preserve
">28. unde-
<
lb
/>
cimi.</
note
>
enim ſolida parallelepipeda priſmatum triangula
<
lb
/>
res baſes habentiũ dupla; </
s
>
<
s
xml:id
="
echoid-s3995
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3996
"
xml:space
="
preserve
">pyramidum ſextupla.</
s
>
<
s
xml:id
="
echoid-s3997
"
xml:space
="
preserve
"/>
</
p
>
<
note
position
="
left
"
xml:space
="
preserve
">7. duode-
<
lb
/>
cimi.</
note
>
</
div
>
<
div
xml:id
="
echoid-div247
"
type
="
section
"
level
="
1
"
n
="
85
">
<
head
xml:id
="
echoid-head92
"
xml:space
="
preserve
">THE OREMA XVI. PROPOSITIO XX.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3998
"
xml:space
="
preserve
">Priſmata omnia & </
s
>
<
s
xml:id
="
echoid-s3999
"
xml:space
="
preserve
">pyramides, quæ in eiſdem,
<
lb
/>
uel æqualibus baſibus conſtituuntur, eam inter
<
lb
/>
ſe proportionem habent, quam altitudines: </
s
>
<
s
xml:id
="
echoid-s4000
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4001
"
xml:space
="
preserve
">ſi
<
lb
/>
axes cum baſibus faciant angulos æquales, eam
<
lb
/>
etiam, quam axes habent proportionem.</
s
>
<
s
xml:id
="
echoid-s4002
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>