Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
< >
page |< < (47) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div286" type="section" level="1" n="96">
          <p>
            <s xml:id="echoid-s5121" xml:space="preserve">
              <pb o="47" file="0205" n="205" rhead="DE CENTRO GRAVIT. SOLID."/>
            eani proportionem habeat, quam a b c d fruſtum ad por-
              <lb/>
            tionem a g d; </s>
            <s xml:id="echoid-s5122" xml:space="preserve">erit punctum l eius fruſti grauitatis cẽtrum:
              <lb/>
            </s>
            <s xml:id="echoid-s5123" xml:space="preserve">habebitq; </s>
            <s xml:id="echoid-s5124" xml:space="preserve">componendo K l ad 1 h proportionem eandem,
              <lb/>
            quam portio conoidis b gc ad a g d portionem. </s>
            <s xml:id="echoid-s5125" xml:space="preserve">Itaq; </s>
            <s xml:id="echoid-s5126" xml:space="preserve">quo
              <lb/>
              <note position="right" xlink:label="note-0205-01" xlink:href="note-0205-01a" xml:space="preserve">20. I. coni
                <lb/>
              corum.</note>
            niam quadratum b f ad quadratum a e, hoc eſt quadratum
              <lb/>
            b c ad quadratum a d eſt, ut linea f g ad g e: </s>
            <s xml:id="echoid-s5127" xml:space="preserve">erunt duæ ter-
              <lb/>
            tiæ quadrati b c ad duas tertias quadrati a d, ut h g ad g _k_:
              <lb/>
            </s>
            <s xml:id="echoid-s5128" xml:space="preserve">& </s>
            <s xml:id="echoid-s5129" xml:space="preserve">ſi à duabus tertiis quadrati b c demptæ fuerint duæ ter-
              <lb/>
            tiæ quadrati a d: </s>
            <s xml:id="echoid-s5130" xml:space="preserve">erit diuidẽdo id, quod relinquitur ad duas
              <lb/>
            tertias quadrati a d, ut h k ad k g. </s>
            <s xml:id="echoid-s5131" xml:space="preserve">Rurſus duæ tertiæ quadra
              <lb/>
            ti a d ad duas tertias quadrati b c ſunt, ut _k_ g ad g h: </s>
            <s xml:id="echoid-s5132" xml:space="preserve">& </s>
            <s xml:id="echoid-s5133" xml:space="preserve">duæ
              <lb/>
            tertiæ quadrati b c ad tertiã partẽ ipſius, ut g h ad h f. </s>
            <s xml:id="echoid-s5134" xml:space="preserve">ergo
              <lb/>
            ex æ quali id, quod relinquitur ex duabus tertiis quadrati
              <lb/>
            b c, demptis ab ipſis quadrati a d duabus tertiis, ad tertiã
              <lb/>
            partem quadrati b c, ut _k_ h ad h f: </s>
            <s xml:id="echoid-s5135" xml:space="preserve">& </s>
            <s xml:id="echoid-s5136" xml:space="preserve">ad portionem eiuſdẽ
              <lb/>
            tertiæ partis, ad quam unà cum ipſa portione, duplam pro
              <lb/>
            portionem habeat eius, quæ eſt quadrati b c ad quadratũ
              <lb/>
            a d, ut K 1 ad 1 h. </s>
            <s xml:id="echoid-s5137" xml:space="preserve">habet enim _K_l ad 1 h ean dem proportio-
              <lb/>
            nem, quam conoidis portio b g c ad portionem a g d: </s>
            <s xml:id="echoid-s5138" xml:space="preserve">por-
              <lb/>
            tio autem b g c ad portionem a g d duplam proportionem
              <lb/>
            habet eius, quæ eſt baſis b c ad baſim a d: </s>
            <s xml:id="echoid-s5139" xml:space="preserve">hoc eſt quadrati
              <lb/>
            b c ad quadratum a d; </s>
            <s xml:id="echoid-s5140" xml:space="preserve">ut proxime demonſtratum eſt. </s>
            <s xml:id="echoid-s5141" xml:space="preserve">quare
              <lb/>
              <note position="right" xlink:label="note-0205-02" xlink:href="note-0205-02a" xml:space="preserve">30. huius</note>
            dempto a d quadrato à duabus tertiis quadrati b c, erit id,
              <lb/>
            quod relin quitur unà cum dicta portione tertiæ partis ad
              <lb/>
            reliquam eiuſdem portionem, ut el ad 1 f. </s>
            <s xml:id="echoid-s5142" xml:space="preserve">Cum igitur cen-
              <lb/>
            trum grauitatis fruſti a b c d ſit l, à quo axis e f in eam, quã
              <lb/>
            diximus, proportionem diuidatur; </s>
            <s xml:id="echoid-s5143" xml:space="preserve">conſtat uerũ eſſe illud,
              <lb/>
            quod demonſtrandum propoſuimus.</s>
            <s xml:id="echoid-s5144" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div288" type="section" level="1" n="97">
          <head xml:id="echoid-head104" xml:space="preserve">FINIS LIBRI DE CENTRO
            <lb/>
          GRAVITATIS SOLIDORVM.</head>
          <p>
            <s xml:id="echoid-s5145" xml:space="preserve">Impreſſ. </s>
            <s xml:id="echoid-s5146" xml:space="preserve">Bononiæ cum licentia Superiorum.</s>
            <s xml:id="echoid-s5147" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>