Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
161
25
162
163
26
164
165
27
166
167
28
168
169
29
170
171
30
172
173
31
174
175
32
176
177
33
178
179
34
180
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(47)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div286
"
type
="
section
"
level
="
1
"
n
="
96
">
<
p
>
<
s
xml:id
="
echoid-s5121
"
xml:space
="
preserve
">
<
pb
o
="
47
"
file
="
0205
"
n
="
205
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
eani proportionem habeat, quam a b c d fruſtum ad por-
<
lb
/>
tionem a g d; </
s
>
<
s
xml:id
="
echoid-s5122
"
xml:space
="
preserve
">erit punctum l eius fruſti grauitatis cẽtrum:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s5123
"
xml:space
="
preserve
">habebitq; </
s
>
<
s
xml:id
="
echoid-s5124
"
xml:space
="
preserve
">componendo K l ad 1 h proportionem eandem,
<
lb
/>
quam portio conoidis b gc ad a g d portionem. </
s
>
<
s
xml:id
="
echoid-s5125
"
xml:space
="
preserve
">Itaq; </
s
>
<
s
xml:id
="
echoid-s5126
"
xml:space
="
preserve
">quo
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0205-01
"
xlink:href
="
note-0205-01a
"
xml:space
="
preserve
">20. I. coni
<
lb
/>
corum.</
note
>
niam quadratum b f ad quadratum a e, hoc eſt quadratum
<
lb
/>
b c ad quadratum a d eſt, ut linea f g ad g e: </
s
>
<
s
xml:id
="
echoid-s5127
"
xml:space
="
preserve
">erunt duæ ter-
<
lb
/>
tiæ quadrati b c ad duas tertias quadrati a d, ut h g ad g _k_:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s5128
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5129
"
xml:space
="
preserve
">ſi à duabus tertiis quadrati b c demptæ fuerint duæ ter-
<
lb
/>
tiæ quadrati a d: </
s
>
<
s
xml:id
="
echoid-s5130
"
xml:space
="
preserve
">erit diuidẽdo id, quod relinquitur ad duas
<
lb
/>
tertias quadrati a d, ut h k ad k g. </
s
>
<
s
xml:id
="
echoid-s5131
"
xml:space
="
preserve
">Rurſus duæ tertiæ quadra
<
lb
/>
ti a d ad duas tertias quadrati b c ſunt, ut _k_ g ad g h: </
s
>
<
s
xml:id
="
echoid-s5132
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5133
"
xml:space
="
preserve
">duæ
<
lb
/>
tertiæ quadrati b c ad tertiã partẽ ipſius, ut g h ad h f. </
s
>
<
s
xml:id
="
echoid-s5134
"
xml:space
="
preserve
">ergo
<
lb
/>
ex æ quali id, quod relinquitur ex duabus tertiis quadrati
<
lb
/>
b c, demptis ab ipſis quadrati a d duabus tertiis, ad tertiã
<
lb
/>
partem quadrati b c, ut _k_ h ad h f: </
s
>
<
s
xml:id
="
echoid-s5135
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5136
"
xml:space
="
preserve
">ad portionem eiuſdẽ
<
lb
/>
tertiæ partis, ad quam unà cum ipſa portione, duplam pro
<
lb
/>
portionem habeat eius, quæ eſt quadrati b c ad quadratũ
<
lb
/>
a d, ut K 1 ad 1 h. </
s
>
<
s
xml:id
="
echoid-s5137
"
xml:space
="
preserve
">habet enim _K_l ad 1 h ean dem proportio-
<
lb
/>
nem, quam conoidis portio b g c ad portionem a g d: </
s
>
<
s
xml:id
="
echoid-s5138
"
xml:space
="
preserve
">por-
<
lb
/>
tio autem b g c ad portionem a g d duplam proportionem
<
lb
/>
habet eius, quæ eſt baſis b c ad baſim a d: </
s
>
<
s
xml:id
="
echoid-s5139
"
xml:space
="
preserve
">hoc eſt quadrati
<
lb
/>
b c ad quadratum a d; </
s
>
<
s
xml:id
="
echoid-s5140
"
xml:space
="
preserve
">ut proxime demonſtratum eſt. </
s
>
<
s
xml:id
="
echoid-s5141
"
xml:space
="
preserve
">quare
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0205-02
"
xlink:href
="
note-0205-02a
"
xml:space
="
preserve
">30. huius</
note
>
dempto a d quadrato à duabus tertiis quadrati b c, erit id,
<
lb
/>
quod relin quitur unà cum dicta portione tertiæ partis ad
<
lb
/>
reliquam eiuſdem portionem, ut el ad 1 f. </
s
>
<
s
xml:id
="
echoid-s5142
"
xml:space
="
preserve
">Cum igitur cen-
<
lb
/>
trum grauitatis fruſti a b c d ſit l, à quo axis e f in eam, quã
<
lb
/>
diximus, proportionem diuidatur; </
s
>
<
s
xml:id
="
echoid-s5143
"
xml:space
="
preserve
">conſtat uerũ eſſe illud,
<
lb
/>
quod demonſtrandum propoſuimus.</
s
>
<
s
xml:id
="
echoid-s5144
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div288
"
type
="
section
"
level
="
1
"
n
="
97
">
<
head
xml:id
="
echoid-head104
"
xml:space
="
preserve
">FINIS LIBRI DE CENTRO
<
lb
/>
GRAVITATIS SOLIDORVM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s5145
"
xml:space
="
preserve
">Impreſſ. </
s
>
<
s
xml:id
="
echoid-s5146
"
xml:space
="
preserve
">Bononiæ cum licentia Superiorum.</
s
>
<
s
xml:id
="
echoid-s5147
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>