Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
< >
page |< < (8) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="69">
          <p>
            <s xml:space="preserve">
              <pb o="8" file="0127" n="127" rhead="DE CENTRO GRAVIT. SOLID."/>
            æquidiſtant autem c g o, m n p. </s>
            <s xml:space="preserve">ergo parallelogrãma ſunt
              <lb/>
            o n, g m, & </s>
            <s xml:space="preserve">linea m n æqualis c g; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">n p ipſi g o. </s>
            <s xml:space="preserve">aptatis igi-
              <lb/>
            tur
              <emph style="sc">K</emph>
            l m, a b c triãgulis, quæ æqualia & </s>
            <s xml:space="preserve">ſimilia sũt; </s>
            <s xml:space="preserve">linea m p
              <lb/>
            in c o, & </s>
            <s xml:space="preserve">punctum n in g cadet. </s>
            <s xml:space="preserve">Quòd cũ g ſit centrum gra-
              <lb/>
            uitatis trianguli a b c, & </s>
            <s xml:space="preserve">n trianguli
              <emph style="sc">K</emph>
            l m grauitatis cen-
              <lb/>
            trum erit id, quod demonſtrandum relinquebatur. </s>
            <s xml:space="preserve">Simili
              <lb/>
            ratione idem contingere demonſtrabimus in aliis priſma-
              <lb/>
            tibus, ſiue quadrilatera, ſiue plurilatera habeant plana,
              <lb/>
            quæ opponuntur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <note position="left" xlink:label="note-0126-01" xlink:href="note-0126-01a" xml:space="preserve">10. unde
              <lb/>
            cimi</note>
            <note position="left" xlink:label="note-0126-02" xlink:href="note-0126-02a" xml:space="preserve">10. unde-
              <lb/>
            cimi</note>
            <note position="left" xlink:label="note-0126-03" xlink:href="note-0126-03a" xml:space="preserve">4. ſexti</note>
            <figure xlink:label="fig-0126-01" xlink:href="fig-0126-01a">
              <image file="0126-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0126-01"/>
            </figure>
            <note position="left" xlink:label="note-0126-04" xlink:href="note-0126-04a" xml:space="preserve">per 5. pe-
              <lb/>
            titionem
              <lb/>
            Archime
              <lb/>
            dis.</note>
          </div>
        </div>
        <div type="section" level="1" n="70">
          <head xml:space="preserve">COROLLARIVM.</head>
          <p>
            <s xml:space="preserve">Exiam demonſtratis perſpicue apparet, cuius
              <lb/>
            Iibet priſmatis axem, parallelogrammorum lat eri
              <lb/>
            bus, quæ ab oppoſitis planis ducũtur æquidiſtare.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="71">
          <head xml:space="preserve">THEOREMA VI. PROPOSITIO VI.</head>
          <p>
            <s xml:space="preserve">Cuiuslibet priſmatis centrum grauitatis eſt in
              <lb/>
            plano, quod oppoſitis planis æquidiſtans, reli-
              <lb/>
            quorum planorum latera bifariam diuidit.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit priſma, in quo plana, quæ opponuntur ſint trian-
              <lb/>
            gula a c e, b d f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">parallelogrammorum latera a b, c d,
              <lb/>
            e f bifariam diuidãtur in punctis g h _K_: </s>
            <s xml:space="preserve">per diuiſiones au-
              <lb/>
            tem planum ducatur; </s>
            <s xml:space="preserve">cuius ſectio figura g h _K_. </s>
            <s xml:space="preserve">eritlinea
              <lb/>
              <anchor type="note" xlink:label="note-0127-01a" xlink:href="note-0127-01"/>
            g h æquidiſtans lineis a c, b d & </s>
            <s xml:space="preserve">h k ipſis c e, d f. </s>
            <s xml:space="preserve">quare ex
              <lb/>
            decimaquinta undecimi elementorum, planum illud pla
              <lb/>
            nis a c e, b d f æquidiſtabit, & </s>
            <s xml:space="preserve">ſaciet ſectionem figu-
              <lb/>
              <anchor type="note" xlink:label="note-0127-02a" xlink:href="note-0127-02"/>
            ram ipſis æqualem, & </s>
            <s xml:space="preserve">ſimilem, ut proxime demonſtra-
              <lb/>
            uimus. </s>
            <s xml:space="preserve">Dico centrum grauitatis priſmatis eſſe in plano
              <lb/>
            g h
              <emph style="sc">K</emph>
            . </s>
            <s xml:space="preserve">Si enim fieri poteſt, ſit eius centrum l: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ducatur
              <lb/>
            l m uſque ad planum g h
              <emph style="sc">K</emph>
            , quæ ipſi a b æquidiſtet.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>