Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
< >
page |< < (27) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="86">
          <p>
            <s xml:space="preserve">
              <pb o="27" file="0165" n="165" rhead="DE CENTRO GRAVIT. SOLID."/>
            proportionem habet, quam baſis a b c d ad baſim g h k l:
              <lb/>
            </s>
            <s xml:space="preserve">ſi enim intelligantur duæ pyramides a b c d e, g h k l m, ha-
              <lb/>
            bebunt hæ inter ſe proportionem eandem, quam ipſarum
              <lb/>
            baſes ex ſexta duodecimi elementorum. </s>
            <s xml:space="preserve">Sed ut baſis a b c d
              <lb/>
            ad g h K l baſim, ita linea o ad lineam p; </s>
            <s xml:space="preserve">hoc eſt ad lineam q
              <lb/>
            ei æqualem. </s>
            <s xml:space="preserve">ergo priſma a e ad priſma g m eſt, ut linea o
              <lb/>
            ad lineam q. </s>
            <s xml:space="preserve">proportio autem o ad q cõpoſita eſt ex pro-
              <lb/>
            portione o ad p, & </s>
            <s xml:space="preserve">ex proportione p ad q. </s>
            <s xml:space="preserve">quare priſma
              <lb/>
            a e ad priſma g m, & </s>
            <s xml:space="preserve">idcirco pyramis a b c d e, ad pyrami-
              <lb/>
            dem g h K l m proportionem habet ex eiſdem proportio-
              <lb/>
            nibus compoſitam, uidelicet ex proportione baſis a b c d
              <lb/>
            ad baſim g h _K_ l, & </s>
            <s xml:space="preserve">ex proportione altitudinis e f ad m n al
              <lb/>
            titudinem. </s>
            <s xml:space="preserve">Quòd ſi lineæ e f, m n inæquales ponantur, ſit
              <lb/>
            e f minor: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ut e f ad m n, ita fiat linea p ad lineam u: </s>
            <s xml:space="preserve">de
              <lb/>
              <anchor type="figure" xlink:label="fig-0165-01a" xlink:href="fig-0165-01"/>
            inde ab ipſa m n abſcindatur r n æqualis e f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per r duca-
              <lb/>
            tur planum, quod oppoſitis planis æquidiſtans faciat ſe-
              <lb/>
            ctionem s t. </s>
            <s xml:space="preserve">erit priſma a e, ad priſma g t, ut baſis a b c d
              <lb/>
            ad baſim g h k l; </s>
            <s xml:space="preserve">hoc eſt ut o ad p: </s>
            <s xml:space="preserve">ut autem priſma g t ad
              <lb/>
            priſma g m, ita altitudo r n; </s>
            <s xml:space="preserve">hoc eſt e f ad altitudinẽ m n;
              <lb/>
            </s>
            <s xml:space="preserve">
              <anchor type="note" xlink:label="note-0165-01a" xlink:href="note-0165-01"/>
            uidelicet linea p ad lineam u. </s>
            <s xml:space="preserve">ergo ex æquali priſma a e ad
              <lb/>
            priſma g m eſt, ut linea o ad ipſam u. </s>
            <s xml:space="preserve">Sed proportio o ad
              <lb/>
            u cõpoſita eſt ex proportione o ad p, quæ eſt baſis a b c d
              <lb/>
            ad baſim g h k l; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ex proportione p ad u, quæ eſt altitudi-
              <lb/>
            nis e f ad altitudinem m n. </s>
            <s xml:space="preserve">priſma igitur a e ad priſma g m</s>
          </p>
        </div>
      </text>
    </echo>