Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
31
10
32
33
11
34
35
12
36
37
13
38
39
14
40
41
15
42
43
16
44
45
17
46
47
18
48
49
19
50
51
20
52
53
21
54
55
22
56
57
23
58
59
24
60
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(28)
of 213
>
>|
DE CENTRO GRAVIT. SOLID.
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
87
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
o
="
28
"
file
="
0167
"
n
="
167
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
uel coni portionis axis à centro grauitatis ita diui
<
lb
/>
ditur, ut pars, quæ terminatur ad uerticem reli-
<
lb
/>
quæ partis, quæ ad baſim, ſit tripla.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:space
="
preserve
">Sit pyramis, cuius baſis triangulum a b c; </
s
>
<
s
xml:space
="
preserve
">axis d e; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">gra
<
lb
/>
uitatis centrum _K_. </
s
>
<
s
xml:space
="
preserve
">Dico lineam d k ipſius _K_ e triplam eſſe.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">trianguli enim b d c centrum grauitatis ſit punctum f; </
s
>
<
s
xml:space
="
preserve
">triã
<
lb
/>
guli a d c centrũ g; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">trianguli a d b ſit h: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">iungantur a f,
<
lb
/>
b g, c h. </
s
>
<
s
xml:space
="
preserve
">Quoniam igitur centrũ grauitatis pyramidis in axe
<
lb
/>
cõſiſtit: </
s
>
<
s
xml:space
="
preserve
">ſuntq; </
s
>
<
s
xml:space
="
preserve
">d e, a f, b g, c h eiuſdẽ pyramidis axes: </
s
>
<
s
xml:space
="
preserve
">conue
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0167-01a
"
xlink:href
="
note-0167-01
"/>
nient omnes in idẽ punctũ _k_, quod eſt grauitatis centrum.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">Itaque animo concipiamus hanc pyramidem diuiſam in
<
lb
/>
quatuor pyramides, quarum baſes ſint ipſa pyramidis
<
lb
/>
triangula; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">axis pun-
<
lb
/>
<
anchor
type
="
handwritten
"
xlink:label
="
hd-0167-01a
"
xlink:href
="
hd-0167-01
"/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0167-01a
"
xlink:href
="
fig-0167-01
"/>
ctum k quæ quidem py-
<
lb
/>
ramides inter ſe æquales
<
lb
/>
ſunt, ut demõſtrabitur.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">Ducatur enĩ per lineas
<
lb
/>
d c, d e planum ſecãs, ut
<
lb
/>
ſit ipſius, & </
s
>
<
s
xml:space
="
preserve
">baſis a b c cõ
<
lb
/>
munis ſectio recta linea
<
lb
/>
c e l: </
s
>
<
s
xml:space
="
preserve
">eiuſdẽ uero & </
s
>
<
s
xml:space
="
preserve
">triã-
<
lb
/>
guli a d b ſitlinea d h l. </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
erit linea a l æqualis ipſi
<
lb
/>
l b: </
s
>
<
s
xml:space
="
preserve
">nam centrum graui-
<
lb
/>
tatis trianguli conſiſtit
<
lb
/>
in linea, quæ ab angulo
<
lb
/>
ad dimidiam baſim per-
<
lb
/>
ducitur, ex tertia deci-
<
lb
/>
ma Archimedis. </
s
>
<
s
xml:space
="
preserve
">quare
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0167-02a
"
xlink:href
="
note-0167-02
"/>
triangulum a c l æquale
<
lb
/>
eſt triangulo b c l: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">propterea pyramis, cuius baſis trian-
<
lb
/>
gulum a c l, uertex d, eſt æqualis pyramidi, cuius baſis b c l
<
lb
/>
triangulum, & </
s
>
<
s
xml:space
="
preserve
">idem uertex. </
s
>
<
s
xml:space
="
preserve
">pyramides enim, quæ ab eodẽ
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0167-03a
"
xlink:href
="
note-0167-03
"/>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>