Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
31 10
32
33 11
34
35 12
36
37 13
38
39 14
40
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
< >
page |< < (30) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div254" type="section" level="1" n="87">
          <p>
            <s xml:id="echoid-s4278" xml:space="preserve">
              <pb o="30" file="0171" n="171" rhead="DE CENTRO GRAVIT. SOLID."/>
            pra demonſtratum eſt, ita eſſe cylindrum, uel cylindri por-
              <lb/>
              <note position="right" xlink:label="note-0171-01" xlink:href="note-0171-01a" xml:space="preserve">8. huius</note>
            tionem ad priſina, cuius baſis rectilinea figura, & </s>
            <s xml:id="echoid-s4279" xml:space="preserve">æqua-
              <lb/>
            lis altitudo. </s>
            <s xml:id="echoid-s4280" xml:space="preserve">ergo per conuerſionem rationis, ut circulus,
              <lb/>
            uel ellipſis ad portiones, ita conus, uel coni portio ad por-
              <lb/>
            tiones ſolidas. </s>
            <s xml:id="echoid-s4281" xml:space="preserve">quare conus uel coni portio ad portiones
              <lb/>
            ſolidas maiorem habet proportionem, quam g e ad e f: </s>
            <s xml:id="echoid-s4282" xml:space="preserve">& </s>
            <s xml:id="echoid-s4283" xml:space="preserve">
              <lb/>
            diuidendo, pyramis ad portiones ſolidas maiorem pro-
              <lb/>
            portionem habet, quam g f ad f e. </s>
            <s xml:id="echoid-s4284" xml:space="preserve">ſiat igitur q f ad f e
              <lb/>
            ut pyramis ad dictas portiones. </s>
            <s xml:id="echoid-s4285" xml:space="preserve">Itaque quoniam à cono
              <lb/>
            uel coni portione, cuius grauitatis centrum eſt f, aufer-
              <lb/>
            tur pyramis, cuius centrum e; </s>
            <s xml:id="echoid-s4286" xml:space="preserve">reliquæ magnitudinis,
              <lb/>
            quæ ex ſolidis portionibus conſtat, centrum grauitatis
              <lb/>
            erit in linea e f protracta, & </s>
            <s xml:id="echoid-s4287" xml:space="preserve">in puncto q. </s>
            <s xml:id="echoid-s4288" xml:space="preserve">quod fieri
              <lb/>
            non poteft: </s>
            <s xml:id="echoid-s4289" xml:space="preserve">eſt enim centrum grauitatis intra. </s>
            <s xml:id="echoid-s4290" xml:space="preserve">Conſtat
              <lb/>
            igitur coni, uel coni portionis grauitatis centrum eſſe pun
              <lb/>
            ctum e. </s>
            <s xml:id="echoid-s4291" xml:space="preserve">quæ omnia demonſtrare oportebat.</s>
            <s xml:id="echoid-s4292" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div258" type="section" level="1" n="88">
          <head xml:id="echoid-head95" xml:space="preserve">THEOREMA XIX. PROPOSITIO XXIII.</head>
          <p>
            <s xml:id="echoid-s4293" xml:space="preserve">
              <emph style="sc">Qvodlibet</emph>
            fruſtum à pyramide, quæ
              <lb/>
            triangularem baſim habeat, abſciſſum, diuiditur
              <lb/>
            in tres pyramides proportionales, in ea proportio
              <lb/>
            ne, quæ eſt lateris maioris baſis ad latus minoris
              <lb/>
            ipſi reſpondens.</s>
            <s xml:id="echoid-s4294" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4295" xml:space="preserve">Hoc demonſtrauit Leonardus Piſanus in libro, qui de-
              <lb/>
            praxi geometriæ inſcribitur. </s>
            <s xml:id="echoid-s4296" xml:space="preserve">Sed quoniam is adhucim-
              <lb/>
            preſſus non eſt, nos ipſius demonſtrationem breuíter
              <lb/>
            perſtringemus, rem ipſam ſecuti, non uerba. </s>
            <s xml:id="echoid-s4297" xml:space="preserve">Sit fru-
              <lb/>
            ſtum pyramidis a b c d e f, cuíus maior baſis triangulum
              <lb/>
            a b c, minor d e f: </s>
            <s xml:id="echoid-s4298" xml:space="preserve">& </s>
            <s xml:id="echoid-s4299" xml:space="preserve">iunctis a e, e c, c d, per line-
              <lb/>
            as a e, e c ducatur planum ſecans fruſtum: </s>
            <s xml:id="echoid-s4300" xml:space="preserve">itemque per
              <lb/>
            lineas e c, c d; </s>
            <s xml:id="echoid-s4301" xml:space="preserve">& </s>
            <s xml:id="echoid-s4302" xml:space="preserve">per c d, d a alia plana ducantur, quæ,
              <lb/>
            diuident fruſtum in tres pyramides a b c e, a d c e, d e f c.</s>
            <s xml:id="echoid-s4303" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>