Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
31
10
32
33
11
34
35
12
36
37
13
38
39
14
40
41
15
42
43
16
44
45
17
46
47
18
48
49
19
50
51
20
52
53
21
54
55
22
56
57
23
58
59
24
60
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div44
"
type
="
section
"
level
="
1
"
n
="
23
">
<
pb
file
="
0034
"
n
="
34
"
rhead
="
ARCHIMEDIS
"/>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s655
"
xml:space
="
preserve
">_Erit r o minor, quàm, quæ uſque ad axem]_ Ex decima
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0034-01
"
xlink:href
="
note-0034-01a
"
xml:space
="
preserve
">E</
note
>
propoſitione quinti libri elementorum. </
s
>
<
s
xml:id
="
echoid-s656
"
xml:space
="
preserve
">Linea, quæ uſque ad axem
<
lb
/>
apud Archimedem, eſt dimidia eius, iuxta quam poſſunt, quæ à ſe-
<
lb
/>
ctione ducuntur; </
s
>
<
s
xml:id
="
echoid-s657
"
xml:space
="
preserve
">ut ex quarta propoſitione libri de conoidibus, & </
s
>
<
s
xml:id
="
echoid-s658
"
xml:space
="
preserve
">
<
lb
/>
ſphæroidibus apparet. </
s
>
<
s
xml:id
="
echoid-s659
"
xml:space
="
preserve
">cur uero ita appellata ſit, nos in commentarijs
<
lb
/>
in eam editis tradidimus.</
s
>
<
s
xml:id
="
echoid-s660
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s661
"
xml:space
="
preserve
">_Quare angulus r p ω acutus erit]_ producatur linea n o ad
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0034-02
"
xlink:href
="
note-0034-02a
"
xml:space
="
preserve
">F</
note
>
h, ut ſit r h æqualis ei, quæ uſque ad axem. </
s
>
<
s
xml:id
="
echoid-s662
"
xml:space
="
preserve
">ſi igitur à puncto h du-
<
lb
/>
catur linea ad rectos angulos ipſi n h, conueniet cum f p extra ſe-
<
lb
/>
ctionem: </
s
>
<
s
xml:id
="
echoid-s663
"
xml:space
="
preserve
">ducta enim per o ipſi a l æquidiſtans, extra ſectionem ca
<
lb
/>
dit ex decima ſepti-
<
lb
/>
<
figure
xlink:label
="
fig-0034-01
"
xlink:href
="
fig-0034-01a
"
number
="
20
">
<
image
file
="
0034-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0034-01
"/>
</
figure
>
ma primi libri coni-
<
lb
/>
corum. </
s
>
<
s
xml:id
="
echoid-s664
"
xml:space
="
preserve
">Itaque con-
<
lb
/>
ueniat in u. </
s
>
<
s
xml:id
="
echoid-s665
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s666
"
xml:space
="
preserve
">quo
<
lb
/>
niam f p est æqui-
<
lb
/>
distans diametro;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s667
"
xml:space
="
preserve
">h u uero ad diame-
<
lb
/>
trum perpendicula-
<
lb
/>
ris; </
s
>
<
s
xml:id
="
echoid-s668
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s669
"
xml:space
="
preserve
">r h æqualis
<
lb
/>
ei, quæ uſq; </
s
>
<
s
xml:id
="
echoid-s670
"
xml:space
="
preserve
">ad axẽ,
<
lb
/>
linea à puncto r ad
<
lb
/>
u ducta angulos re-
<
lb
/>
ctos faciet cum ea, quæ ſectionem in puncto p contingit, hoc eſt cum
<
lb
/>
k ω, ut mox demonstrabitur. </
s
>
<
s
xml:id
="
echoid-s671
"
xml:space
="
preserve
">quare perpendicularis r t inter p & </
s
>
<
s
xml:id
="
echoid-s672
"
xml:space
="
preserve
">
<
lb
/>
ω cadet; </
s
>
<
s
xml:id
="
echoid-s673
"
xml:space
="
preserve
">erítque r p ω angulus acutus.</
s
>
<
s
xml:id
="
echoid-s674
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s675
"
xml:space
="
preserve
">Sit rectanguli coni ſectio, ſeu parabole a b c, cuius
<
lb
/>
diameter b d: </
s
>
<
s
xml:id
="
echoid-s676
"
xml:space
="
preserve
">atque ipſam contingat linea e f in pun-
<
lb
/>
cto g: </
s
>
<
s
xml:id
="
echoid-s677
"
xml:space
="
preserve
">ſumatur autem in diametro b d linea h k æqua-
<
lb
/>
lis ei, quæ uſque ad axem: </
s
>
<
s
xml:id
="
echoid-s678
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s679
"
xml:space
="
preserve
">per g ducta g l, diame-
<
lb
/>
tro æquidistante, à puncto _k_ ad rectos angulos ipſi b d
<
lb
/>
ducatur _k_ m, ſecans g l in m. </
s
>
<
s
xml:id
="
echoid-s680
"
xml:space
="
preserve
">Dico lineam ab h </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>