Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="72">
          <pb file="0130" n="130" rhead="FED. COMMANDINI"/>
          <p>
            <s xml:space="preserve">SIT cylindrus, uel cylindri po rtio a c: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">plano per a-
              <lb/>
            xem ducto ſecetur; </s>
            <s xml:space="preserve">cuius ſectio ſit parallelogrammum a b
              <lb/>
            c d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">bifariam diuiſis a d, b c parallelogrammi lateribus,
              <lb/>
            per diuiſionum puncta e f planum baſi æquidiſtans duca-
              <lb/>
            tur; </s>
            <s xml:space="preserve">quod faciet ſectionem, in cy lindro quidem circulum
              <lb/>
            æqualem iis, qui ſunt in baſibus, ut demonſtrauit Serenus
              <lb/>
            in libro cylindricorum, propoſitione quinta: </s>
            <s xml:space="preserve">in cylindri
              <lb/>
            uero portione ellipſim æqualem, & </s>
            <s xml:space="preserve">ſimilem eis, quæ ſunt
              <lb/>
            in oppoſitis planis, quod nos
              <lb/>
              <anchor type="figure" xlink:label="fig-0130-01a" xlink:href="fig-0130-01"/>
            demonſtrauimus in commen
              <lb/>
            tariis in librum Archimedis
              <lb/>
            de conoidibus, & </s>
            <s xml:space="preserve">ſphæroidi-
              <lb/>
            bus. </s>
            <s xml:space="preserve">Dico centrum grauita-
              <lb/>
            tis cylindri, uel cylindri por-
              <lb/>
            tionis eſſe in plano e f. </s>
            <s xml:space="preserve">Si enĩ
              <lb/>
            fieri poteſt, fit centrum g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            ducatur g h ipſi a d æquidi-
              <lb/>
            ſtans, uſque ad e f planum.
              <lb/>
            </s>
            <s xml:space="preserve">Itaque linea a e continenter
              <lb/>
            diuiſa bifariam, erit tandem
              <lb/>
            pars aliqua ipſius k e, minor
              <lb/>
            g h. </s>
            <s xml:space="preserve">Diuidantur ergo lineæ
              <lb/>
            a e, e d in partes æquales ipſi
              <lb/>
            k e: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per diuiſiones plana ba
              <lb/>
            ſibus æquidiſtantia ducãtur. </s>
            <s xml:space="preserve">
              <lb/>
            erunt iam ſectiones, figuræ æ-
              <lb/>
            quales, & </s>
            <s xml:space="preserve">ſimiles eis, quæ ſunt
              <lb/>
            in baſibus: </s>
            <s xml:space="preserve">atque erit cylindrus in cylindros diuiſus: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">cy
              <lb/>
            lindri portio in portiones æquales, & </s>
            <s xml:space="preserve">ſimiles ipſi k f. </s>
            <s xml:space="preserve">reli-
              <lb/>
            qua ſimiliter, ut ſuperius in priſmate concludentur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0130-01" xlink:href="fig-0130-01a">
              <image file="0130-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0130-01"/>
            </figure>
          </div>
        </div>
      </text>
    </echo>