Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
< >
page |< < (13) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb o="13" file="0137" n="137" rhead="DE CENTRO GRAVIT. SOLID."/>
            trianguli g h K, & </s>
            <s xml:space="preserve">ipſius ρ τ axis medium.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <note position="left" xlink:label="note-0132-02" xlink:href="note-0132-02a" xml:space="preserve">5. huius</note>
            <figure xlink:label="fig-0133-01" xlink:href="fig-0133-01a">
              <image file="0133-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0133-01"/>
            </figure>
            <note position="right" xlink:label="note-0133-01" xlink:href="note-0133-01a" xml:space="preserve">2. ſexti.</note>
            <note position="right" xlink:label="note-0133-02" xlink:href="note-0133-02a" xml:space="preserve">I1. quinti</note>
            <note position="right" xlink:label="note-0133-03" xlink:href="note-0133-03a" xml:space="preserve">2. ſexti.</note>
            <note position="left" xlink:label="note-0134-01" xlink:href="note-0134-01a" xml:space="preserve">19. ſexti</note>
            <figure xlink:label="fig-0134-01" xlink:href="fig-0134-01a">
              <image file="0134-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0134-01"/>
            </figure>
            <note position="left" xlink:label="note-0134-02" xlink:href="note-0134-02a" xml:space="preserve">2. uel 121
              <lb/>
            quinti.</note>
            <note position="right" xlink:label="note-0135-01" xlink:href="note-0135-01a" xml:space="preserve">8. quinti.</note>
            <note position="right" xlink:label="note-0135-02" xlink:href="note-0135-02a" xml:space="preserve">28. unde
              <lb/>
            cimi</note>
            <note position="right" xlink:label="note-0135-03" xlink:href="note-0135-03a" xml:space="preserve">15. quinti</note>
            <note position="right" xlink:label="note-0135-04" xlink:href="note-0135-04a" xml:space="preserve">19. quinti
              <lb/>
            apud Cã
              <lb/>
            panum.</note>
            <figure xlink:label="fig-0136-01" xlink:href="fig-0136-01a">
              <image file="0136-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0136-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Sit priſma a g, cuius oppoſita plana ſint quadrilatera
              <lb/>
            a b c d, e f g h: </s>
            <s xml:space="preserve">ſecenturq; </s>
            <s xml:space="preserve">a e, b f, c g, d h bifariam: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per di-
              <lb/>
            uiſiones planum ducatur; </s>
            <s xml:space="preserve">quod ſectionem faciat quadrila-
              <lb/>
            terum _K_ l m n. </s>
            <s xml:space="preserve">Deinde iuncta a c per lineas a c, a e ducatur
              <lb/>
            planum ſecãs priſma, quod ipſum diuidet in duo priſmata
              <lb/>
            triangulares baſes habentia a b c e f g, a d c e h g. </s>
            <s xml:space="preserve">Sint autẽ
              <lb/>
            triangulorum a b c, e f g gra-
              <lb/>
              <anchor type="figure" xlink:label="fig-0137-01a" xlink:href="fig-0137-01"/>
            uitatis centra o p: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">triangu-
              <lb/>
            lorum a d c, e h g centra q r:
              <lb/>
            </s>
            <s xml:space="preserve">iunganturq; </s>
            <s xml:space="preserve">o p, q r; </s>
            <s xml:space="preserve">quæ pla-
              <lb/>
            no _k_ l m n occurrant in pun-
              <lb/>
            ctis s t. </s>
            <s xml:space="preserve">erit ex iis, quæ demon
              <lb/>
            ſtrauimus, punctum s grauita
              <lb/>
            tis centrum trianguli k l m; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            ipſius priſmatis a b c e f g: </s>
            <s xml:space="preserve">pun
              <lb/>
            ctum uero t centrum grauita
              <lb/>
            tis trianguli _K_ n m, & </s>
            <s xml:space="preserve">priſma-
              <lb/>
            tis a d c, e h g. </s>
            <s xml:space="preserve">iunctis igitur
              <lb/>
            o q, p r, s t, erit in linea o q cẽ
              <lb/>
            trum grauitatis quadrilateri
              <lb/>
            a b c d, quod ſit u: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in linea
              <lb/>
            p r cẽtrum quadrilateri e f g h
              <lb/>
            ſit autem x. </s>
            <s xml:space="preserve">deniqueiungatur
              <lb/>
            u x, quæ ſecet lineam ſ t in y. </s>
            <s xml:space="preserve">ſe
              <lb/>
            cabit enim cum ſint in eodem
              <lb/>
              <anchor type="note" xlink:label="note-0137-01a" xlink:href="note-0137-01"/>
            plano: </s>
            <s xml:space="preserve">atq; </s>
            <s xml:space="preserve">erit y grauitatis centrum quadril ateri _K_ lm n.
              <lb/>
            </s>
            <s xml:space="preserve">Dico idem punctum y centrum quoque gra uitatis eſſe to-
              <lb/>
            tius priſmatis. </s>
            <s xml:space="preserve">Quoniam enim quadri lateri k lm n graui-
              <lb/>
            tatis centrum eſt y: </s>
            <s xml:space="preserve">linea s y ad y t eandem proportionem
              <lb/>
            habebit, quam triangulum k n m ad triangulum k lm, ex 8
              <lb/>
            Archimedis de centro grauitatis planorum. </s>
            <s xml:space="preserve">Vtautem triã
              <lb/>
            gulum k n m ad ipſum k l m, hoc eſt ut triangulum a d c ad
              <lb/>
            triangulum a b c, æqualia enim ſunt, ita priſina a d c e h g</s>
          </p>
        </div>
      </text>
    </echo>