Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb file="0138" n="138" rhead="FED. COMMANDINI"/>
            ad priſma a b c e f g. </s>
            <s xml:space="preserve">quare linea s y ad y t eandem propor-
              <lb/>
            tionem habet, quam priſma a d c e h g ad priſma a b c e f g.
              <lb/>
            </s>
            <s xml:space="preserve">Sed priſmatis a b c e f g centrum grauitatis eſts: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">priſma-
              <lb/>
            tis a d c e h g centrum t. </s>
            <s xml:space="preserve">magnitudinis igitur ex his compo
              <lb/>
            ſitæ, hoc eſt totius priſmatis a g centrum grauitatis eſt pun
              <lb/>
            ctum y; </s>
            <s xml:space="preserve">medium ſcilicet axis u x, qui oppoſitorum plano-
              <lb/>
            rum centra coniungit.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="3">
            <figure xlink:label="fig-0137-01" xlink:href="fig-0137-01a">
              <image file="0137-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0137-01"/>
            </figure>
            <note position="right" xlink:label="note-0137-01" xlink:href="note-0137-01a" xml:space="preserve">5. huius.</note>
          </div>
          <p>
            <s xml:space="preserve">Rurſus ſit priſma baſim habens pentagonum a b c d e:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quod ei opponitur ſit f g h _K_ l: </s>
            <s xml:space="preserve">ſec enturq; </s>
            <s xml:space="preserve">a f, b g, c h,
              <lb/>
            d _k_, el bifariam: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per diuiſiones ducto plano, ſectio ſit pẽ
              <lb/>
            tagonũ m n o p q. </s>
            <s xml:space="preserve">deinde iuncta e b per lineas le, e b aliud
              <lb/>
            planum ducatur, diuidẽs priſ
              <lb/>
              <anchor type="figure" xlink:label="fig-0138-01a" xlink:href="fig-0138-01"/>
            ma a k in duo priſmata, in priſ
              <lb/>
            ma ſcilicet al, cuius plana op-
              <lb/>
            poſita ſint triangula a b e f g l:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in prima b _k_ cuius plana op
              <lb/>
            poſita ſint quadrilatera b c d e
              <lb/>
            g h _k_ l. </s>
            <s xml:space="preserve">Sint autem triangulo-
              <lb/>
            rum a b e, f g l centra grauita
              <lb/>
            tis puncta r ſ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">b c d e, g h _k_ l
              <lb/>
            quadrilaterorum centra tu: </s>
            <s xml:space="preserve">
              <lb/>
            iunganturq; </s>
            <s xml:space="preserve">r s, t u o ccurren-
              <lb/>
            tes plano m n o p q in punctis
              <lb/>
            x y. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">itidem iungãtur r t, ſu,
              <lb/>
            x y. </s>
            <s xml:space="preserve">erit in linea r t cẽtrum gra
              <lb/>
            uitatis pentagoni a b c d e; </s>
            <s xml:space="preserve">
              <lb/>
            quod ſit z: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in linea ſu cen-
              <lb/>
            trum pentagoni f g h k l: </s>
            <s xml:space="preserve">ſit au
              <lb/>
            tem χ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ducatur z χ, quæ di-
              <lb/>
            cto plano in χ occurrat. </s>
            <s xml:space="preserve">Itaq; </s>
            <s xml:space="preserve">
              <lb/>
            punctum x eſt centrum graui
              <lb/>
            tatis trianguli m n q, ac priſ-
              <lb/>
            matis al: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">y grauitatis centrum quadrilateri n o p q, ac
              <lb/>
            priſmatis b k. </s>
            <s xml:space="preserve">quare y centrum erit pentagoni m n o p q. </s>
            <s xml:space="preserve">&</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>