Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
41
15
42
43
16
44
45
17
46
47
18
48
49
19
50
51
20
52
53
21
54
55
22
56
57
23
58
59
24
60
61
25
62
63
26
64
65
27
66
67
22
68
69
29
70
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(32)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div137
"
type
="
section
"
level
="
1
"
n
="
43
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1859
"
xml:space
="
preserve
">
<
pb
o
="
32
"
file
="
0075
"
n
="
75
"
rhead
="
DE IIS QVAE VEH. IN AQVA.
"/>
ad ſectionem e f g ex parte e linea l m, eidem a c baſi æquidi-
<
lb
/>
stans. </
s
>
<
s
xml:id
="
echoid-s1860
"
xml:space
="
preserve
">Sit autem ſectionis a b c, linea b n iuxta quam poſſunt, quæ
<
lb
/>
à ſectione ducuntur: </
s
>
<
s
xml:id
="
echoid-s1861
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1862
"
xml:space
="
preserve
">ſectionis e f c ſit ipſa f o. </
s
>
<
s
xml:id
="
echoid-s1863
"
xml:space
="
preserve
">quoniam igi-
<
lb
/>
tur triangula c d b, c f g ſimilia ſunt, erit ut b c ad c f, ita d c
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0075-01
"
xlink:href
="
note-0075-01a
"
xml:space
="
preserve
">4. ſexti.</
note
>
ad c g; </
s
>
<
s
xml:id
="
echoid-s1864
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1865
"
xml:space
="
preserve
">b d ad f g. </
s
>
<
s
xml:id
="
echoid-s1866
"
xml:space
="
preserve
">rurſus quoniam triangula c k b, c l f etiã
<
lb
/>
inter ſe ſunt ſimilia, ut b c ad c f, boc eſt ut b d ad f g, ita erit k c
<
lb
/>
ad c l; </
s
>
<
s
xml:id
="
echoid-s1867
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1868
"
xml:space
="
preserve
">b K ad f l. </
s
>
<
s
xml:id
="
echoid-s1869
"
xml:space
="
preserve
">quare K c ad c l, & </
s
>
<
s
xml:id
="
echoid-s1870
"
xml:space
="
preserve
">b k ad f l ſunt ut d c
<
lb
/>
ad c g: </
s
>
<
s
xml:id
="
echoid-s1871
"
xml:space
="
preserve
">hoc eſt ut earum duplæ a c ad c e. </
s
>
<
s
xml:id
="
echoid-s1872
"
xml:space
="
preserve
">ſed ut b d ad f g, ita d c
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0075-02
"
xlink:href
="
note-0075-02a
"
xml:space
="
preserve
">15. quin-
<
lb
/>
ti.</
note
>
ad c g; </
s
>
<
s
xml:id
="
echoid-s1873
"
xml:space
="
preserve
">hoc ẽ a d ad e g: </
s
>
<
s
xml:id
="
echoid-s1874
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1875
"
xml:space
="
preserve
">permutãdo ut b d ad a d, ita f g ad e g.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1876
"
xml:space
="
preserve
">quadratum autem a d æquale eſt rectangulo d b n ex undecima pri
<
lb
/>
mi conicorum. </
s
>
<
s
xml:id
="
echoid-s1877
"
xml:space
="
preserve
">ergo tres lineæ b d, a d, b n inter ſe ſunt proportio
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0075-03
"
xlink:href
="
note-0075-03a
"
xml:space
="
preserve
">17. ſexti.</
note
>
nales. </
s
>
<
s
xml:id
="
echoid-s1878
"
xml:space
="
preserve
">eadem quoque ratione cum quadratum e g æquale ſit rectan
<
lb
/>
gulo g f o, tres aliæ lineæ f g, e g, f o, deinceps proportionales
<
lb
/>
erũt. </
s
>
<
s
xml:id
="
echoid-s1879
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1880
"
xml:space
="
preserve
">ut b d ad, a d, ita f g ad e g. </
s
>
<
s
xml:id
="
echoid-s1881
"
xml:space
="
preserve
">quare ut a d ad b n, ita e g
<
lb
/>
ad f o. </
s
>
<
s
xml:id
="
echoid-s1882
"
xml:space
="
preserve
">ex æquali igitur, ut d b ad b n, ita g f ad f o: </
s
>
<
s
xml:id
="
echoid-s1883
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1884
"
xml:space
="
preserve
">permu-
<
lb
/>
tando ut d b ad g f, ita b n ad f o. </
s
>
<
s
xml:id
="
echoid-s1885
"
xml:space
="
preserve
">ut autem d b ad g f, ita b k
<
lb
/>
ad f l. </
s
>
<
s
xml:id
="
echoid-s1886
"
xml:space
="
preserve
">ergo b k ad f l, ut b n ad f o: </
s
>
<
s
xml:id
="
echoid-s1887
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1888
"
xml:space
="
preserve
">permutando, ut b k ad
<
lb
/>
bn, ita f l ad f o. </
s
>
<
s
xml:id
="
echoid-s1889
"
xml:space
="
preserve
">Rurſus quoniá quadratú h K æquale eſt rectan
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0075-04
"
xlink:href
="
note-0075-04a
"
xml:space
="
preserve
">11. primi
<
lb
/>
conicorũ</
note
>
gulo k b n: </
s
>
<
s
xml:id
="
echoid-s1890
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1891
"
xml:space
="
preserve
">quadratum m l rectangulo l f o æquale: </
s
>
<
s
xml:id
="
echoid-s1892
"
xml:space
="
preserve
">erunt tres
<
lb
/>
lineæ b k, k h, b n proportionales: </
s
>
<
s
xml:id
="
echoid-s1893
"
xml:space
="
preserve
">itémq; </
s
>
<
s
xml:id
="
echoid-s1894
"
xml:space
="
preserve
">proportionales inter ſe
<
lb
/>
f l, l m, f o. </
s
>
<
s
xml:id
="
echoid-s1895
"
xml:space
="
preserve
">quare ut linea b K ad lineam b n, ita quadratum b K
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0075-05
"
xlink:href
="
note-0075-05a
"
xml:space
="
preserve
">cor. 20. ſe
<
lb
/>
xti.</
note
>
ad quadratum h k: </
s
>
<
s
xml:id
="
echoid-s1896
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1897
"
xml:space
="
preserve
">ut linea f l ad ipſam f o, ita quadratú f l
<
lb
/>
ad quadratum l m. </
s
>
<
s
xml:id
="
echoid-s1898
"
xml:space
="
preserve
">Itaque quoniam, ut b K ad b n, ita eſt f l ad
<
lb
/>
f o; </
s
>
<
s
xml:id
="
echoid-s1899
"
xml:space
="
preserve
">erit ut quadratum b K ad quadratum k h, ita quadratum f l
<
lb
/>
ad l m quadratum. </
s
>
<
s
xml:id
="
echoid-s1900
"
xml:space
="
preserve
">ergo ut linea b k, ad lineam K h, ita linea f l
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0075-06
"
xlink:href
="
note-0075-06a
"
xml:space
="
preserve
">22. ſexti</
note
>
ad ipsã lm: </
s
>
<
s
xml:id
="
echoid-s1901
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1902
"
xml:space
="
preserve
">permutãdo ut b k ad f l, ita k h ad lm. </
s
>
<
s
xml:id
="
echoid-s1903
"
xml:space
="
preserve
">ſed b k ad
<
lb
/>
f l erat ut k c ad c l. </
s
>
<
s
xml:id
="
echoid-s1904
"
xml:space
="
preserve
">ergo k h ad lm, ut K c ad c l. </
s
>
<
s
xml:id
="
echoid-s1905
"
xml:space
="
preserve
">quare ex eo
<
lb
/>
dem lemmate patet lineam h c, & </
s
>
<
s
xml:id
="
echoid-s1906
"
xml:space
="
preserve
">per m punctum tranſire. </
s
>
<
s
xml:id
="
echoid-s1907
"
xml:space
="
preserve
">ut igi-
<
lb
/>
tur K c ad c l: </
s
>
<
s
xml:id
="
echoid-s1908
"
xml:space
="
preserve
">hoc eſt ut a c ad c e, ita h c ad c m; </
s
>
<
s
xml:id
="
echoid-s1909
"
xml:space
="
preserve
">hoc eſt ad eam
<
lb
/>
ipſius partem, quæ inter c, & </
s
>
<
s
xml:id
="
echoid-s1910
"
xml:space
="
preserve
">e g c ſectionem interyeitur. </
s
>
<
s
xml:id
="
echoid-s1911
"
xml:space
="
preserve
">ſimiliter
<
lb
/>
demonſtrabimus idem contingere in alijs lineis, quæ à puncto c ad
<
lb
/>
a b c ſectionem perducuntur. </
s
>
<
s
xml:id
="
echoid-s1912
"
xml:space
="
preserve
">At uero b c ad e f eandern propor-
<
lb
/>
tionem habere, liquido apparet; </
s
>
<
s
xml:id
="
echoid-s1913
"
xml:space
="
preserve
">nam b c ad c f, eſt ut d c ad c g;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1914
"
xml:space
="
preserve
">uidelicet ut earum duplæ, a c ad c e.</
s
>
<
s
xml:id
="
echoid-s1915
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>