Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="71">
          <p>
            <s xml:space="preserve">
              <pb file="0128" n="128" rhead="FED. COMMANDINI"/>
            ergo linea a g continenter in duas partes æquales diui-
              <lb/>
              <anchor type="note" xlink:label="note-0128-01a" xlink:href="note-0128-01"/>
            ſa, relinquetur tãdem pars aliqua n g, quæ minor eritl m.
              <lb/>
            </s>
            <s xml:space="preserve">Vtraque uero linearum a g, g b diuidatur in partes æqua-
              <lb/>
            les ipſi n g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per puncta diuiſionum plana oppoſitis pla-
              <lb/>
              <anchor type="note" xlink:label="note-0128-02a" xlink:href="note-0128-02"/>
            nis æquidiſtantia ducantur. </s>
            <s xml:space="preserve">erunt ſectiones figuræ æqua-
              <lb/>
            les, ac ſimiles ipſis a c e, b d f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">totum priſma diuiſum erit
              <lb/>
            in priſmata æqualia, & </s>
            <s xml:space="preserve">ſimilia: </s>
            <s xml:space="preserve">quæ cum inter ſe congruãt;
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">grauitatis centra ſibi ipſis congruentia, reſpondentiaq; </s>
            <s xml:space="preserve">
              <lb/>
            habebunt. </s>
            <s xml:space="preserve">Itaq: </s>
            <s xml:space="preserve">
              <lb/>
              <anchor type="figure" xlink:label="fig-0128-01a" xlink:href="fig-0128-01"/>
            ſunt magnitudi-
              <lb/>
            nes quædã æqua-
              <lb/>
            les ipſi n h, & </s>
            <s xml:space="preserve">nu-
              <lb/>
            mero pares, qua-
              <lb/>
            rum centra gra-
              <lb/>
            uitatis in eadẽ re
              <lb/>
            cta linea conſti-
              <lb/>
            tuuntur: </s>
            <s xml:space="preserve">duæ ue-
              <lb/>
            ro mediæ æqua-
              <lb/>
            les ſunt: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quæ ex
              <lb/>
            utraque parte i-
              <lb/>
            pſarum ſimili --
              <lb/>
            ter æquales: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">æ-
              <lb/>
            quales rectæ li-
              <lb/>
            neæ, quæ inter
              <lb/>
            grauitatis centra
              <lb/>
            interiiciuntur.
              <lb/>
            </s>
            <s xml:space="preserve">quare ex corolla-
              <lb/>
            rio quintæ pro-
              <lb/>
            poſitionis primi
              <lb/>
            libri Archimedis
              <lb/>
            de centro graui-
              <lb/>
            tatis planorum; </s>
            <s xml:space="preserve">magnitudinis ex his omnibus compoſitæ
              <lb/>
            centrum grauitatis eſt in medio lineæ, quæ magnitudi-
              <lb/>
            num mediarum centra coniungit. </s>
            <s xml:space="preserve">at qui non ita res ha-</s>
          </p>
        </div>
      </text>
    </echo>