Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
61
25
62
63
26
64
65
27
66
67
22
68
69
29
70
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(19)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div230
"
type
="
section
"
level
="
1
"
n
="
78
">
<
pb
o
="
19
"
file
="
0149
"
n
="
149
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
<
figure
number
="
102
">
<
image
file
="
0149-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0149-01
"/>
</
figure
>
</
div
>
<
div
xml:id
="
echoid-div231
"
type
="
section
"
level
="
1
"
n
="
79
">
<
head
xml:id
="
echoid-head86
"
xml:space
="
preserve
">THEOREMA X. PROPOSITIO XIIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3761
"
xml:space
="
preserve
">Cuiuslibet pyramidis, & </
s
>
<
s
xml:id
="
echoid-s3762
"
xml:space
="
preserve
">cuiuslibet coni, uel
<
lb
/>
coni portionis, centrum grauitatis in axe cõſiſtit.</
s
>
<
s
xml:id
="
echoid-s3763
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3764
"
xml:space
="
preserve
">SIT pyramis, cuius baſis triangulum a b c: </
s
>
<
s
xml:id
="
echoid-s3765
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3766
"
xml:space
="
preserve
">axis d e.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3767
"
xml:space
="
preserve
">Dico in linea d e ipſius grauitatis centrum ineſſe. </
s
>
<
s
xml:id
="
echoid-s3768
"
xml:space
="
preserve
">Si enim
<
lb
/>
fieri poteſt, ſit centrum f: </
s
>
<
s
xml:id
="
echoid-s3769
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3770
"
xml:space
="
preserve
">ab f ducatur ad baſim pyrami
<
lb
/>
dis linea f g, axi æquidiſtans: </
s
>
<
s
xml:id
="
echoid-s3771
"
xml:space
="
preserve
">iunctaq; </
s
>
<
s
xml:id
="
echoid-s3772
"
xml:space
="
preserve
">e g ad latera trian-
<
lb
/>
guli a b c producatur in h. </
s
>
<
s
xml:id
="
echoid-s3773
"
xml:space
="
preserve
">quam uero proportionem ha-
<
lb
/>
bet linea h e ad e g, habeat pyramis ad aliud ſolidum, in
<
lb
/>
quo K: </
s
>
<
s
xml:id
="
echoid-s3774
"
xml:space
="
preserve
">inſcribaturq; </
s
>
<
s
xml:id
="
echoid-s3775
"
xml:space
="
preserve
">in pyramide ſolida figura, & </
s
>
<
s
xml:id
="
echoid-s3776
"
xml:space
="
preserve
">altera cir
<
lb
/>
cumſcribatur ex priſmatibus æqualem habentibus altitu-
<
lb
/>
dinem, ita ut circumſcripta inſcriptam exuperet magnitu-
<
lb
/>
dine, quæ ſolido _k_ ſit minor. </
s
>
<
s
xml:id
="
echoid-s3777
"
xml:space
="
preserve
">Et quoniam in pyramide pla
<
lb
/>
num baſi æquidiſtans ductum ſectionem facit figuram ſi-
<
lb
/>
milem ei, quæ eſt baſis; </
s
>
<
s
xml:id
="
echoid-s3778
"
xml:space
="
preserve
">centrumq; </
s
>
<
s
xml:id
="
echoid-s3779
"
xml:space
="
preserve
">grauitatis in axe haben
<
lb
/>
tem: </
s
>
<
s
xml:id
="
echoid-s3780
"
xml:space
="
preserve
">erit priſmatis s t grauitatis centrũ in linear q; </
s
>
<
s
xml:id
="
echoid-s3781
"
xml:space
="
preserve
">priſ-
<
lb
/>
matis u x centrum in linea q p; </
s
>
<
s
xml:id
="
echoid-s3782
"
xml:space
="
preserve
">priſmatis y z in linea p o; </
s
>
<
s
xml:id
="
echoid-s3783
"
xml:space
="
preserve
">
<
lb
/>
priſmatis η θ in l_i_nea o n; </
s
>
<
s
xml:id
="
echoid-s3784
"
xml:space
="
preserve
">priſmatis λ μ in linea n m; </
s
>
<
s
xml:id
="
echoid-s3785
"
xml:space
="
preserve
">priſ-
<
lb
/>
matis ν π in m l; </
s
>
<
s
xml:id
="
echoid-s3786
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3787
"
xml:space
="
preserve
">denique priſmatis ρ σ in l e. </
s
>
<
s
xml:id
="
echoid-s3788
"
xml:space
="
preserve
">quare </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>