Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
< >
page |< < (19) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div230" type="section" level="1" n="78">
          <pb o="19" file="0149" n="149" rhead="DE CENTRO GRAVIT. SOLID."/>
          <figure number="102">
            <image file="0149-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0149-01"/>
          </figure>
        </div>
        <div xml:id="echoid-div231" type="section" level="1" n="79">
          <head xml:id="echoid-head86" xml:space="preserve">THEOREMA X. PROPOSITIO XIIII.</head>
          <p>
            <s xml:id="echoid-s3761" xml:space="preserve">Cuiuslibet pyramidis, & </s>
            <s xml:id="echoid-s3762" xml:space="preserve">cuiuslibet coni, uel
              <lb/>
            coni portionis, centrum grauitatis in axe cõſiſtit.</s>
            <s xml:id="echoid-s3763" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3764" xml:space="preserve">SIT pyramis, cuius baſis triangulum a b c: </s>
            <s xml:id="echoid-s3765" xml:space="preserve">& </s>
            <s xml:id="echoid-s3766" xml:space="preserve">axis d e.
              <lb/>
            </s>
            <s xml:id="echoid-s3767" xml:space="preserve">Dico in linea d e ipſius grauitatis centrum ineſſe. </s>
            <s xml:id="echoid-s3768" xml:space="preserve">Si enim
              <lb/>
            fieri poteſt, ſit centrum f: </s>
            <s xml:id="echoid-s3769" xml:space="preserve">& </s>
            <s xml:id="echoid-s3770" xml:space="preserve">ab f ducatur ad baſim pyrami
              <lb/>
            dis linea f g, axi æquidiſtans: </s>
            <s xml:id="echoid-s3771" xml:space="preserve">iunctaq; </s>
            <s xml:id="echoid-s3772" xml:space="preserve">e g ad latera trian-
              <lb/>
            guli a b c producatur in h. </s>
            <s xml:id="echoid-s3773" xml:space="preserve">quam uero proportionem ha-
              <lb/>
            bet linea h e ad e g, habeat pyramis ad aliud ſolidum, in
              <lb/>
            quo K: </s>
            <s xml:id="echoid-s3774" xml:space="preserve">inſcribaturq; </s>
            <s xml:id="echoid-s3775" xml:space="preserve">in pyramide ſolida figura, & </s>
            <s xml:id="echoid-s3776" xml:space="preserve">altera cir
              <lb/>
            cumſcribatur ex priſmatibus æqualem habentibus altitu-
              <lb/>
            dinem, ita ut circumſcripta inſcriptam exuperet magnitu-
              <lb/>
            dine, quæ ſolido _k_ ſit minor. </s>
            <s xml:id="echoid-s3777" xml:space="preserve">Et quoniam in pyramide pla
              <lb/>
            num baſi æquidiſtans ductum ſectionem facit figuram ſi-
              <lb/>
            milem ei, quæ eſt baſis; </s>
            <s xml:id="echoid-s3778" xml:space="preserve">centrumq; </s>
            <s xml:id="echoid-s3779" xml:space="preserve">grauitatis in axe haben
              <lb/>
            tem: </s>
            <s xml:id="echoid-s3780" xml:space="preserve">erit priſmatis s t grauitatis centrũ in linear q; </s>
            <s xml:id="echoid-s3781" xml:space="preserve">priſ-
              <lb/>
            matis u x centrum in linea q p; </s>
            <s xml:id="echoid-s3782" xml:space="preserve">priſmatis y z in linea p o; </s>
            <s xml:id="echoid-s3783" xml:space="preserve">
              <lb/>
            priſmatis η θ in l_i_nea o n; </s>
            <s xml:id="echoid-s3784" xml:space="preserve">priſmatis λ μ in linea n m; </s>
            <s xml:id="echoid-s3785" xml:space="preserve">priſ-
              <lb/>
            matis ν π in m l; </s>
            <s xml:id="echoid-s3786" xml:space="preserve">& </s>
            <s xml:id="echoid-s3787" xml:space="preserve">denique priſmatis ρ σ in l e. </s>
            <s xml:id="echoid-s3788" xml:space="preserve">quare </s>
          </p>
        </div>
      </text>
    </echo>