Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
< >
page |< < (28) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="87">
          <p>
            <s xml:space="preserve">
              <pb o="28" file="0167" n="167" rhead="DE CENTRO GRAVIT. SOLID."/>
            uel coni portionis axis à centro grauitatis ita diui
              <lb/>
            ditur, ut pars, quæ terminatur ad uerticem reli-
              <lb/>
            quæ partis, quæ ad baſim, ſit tripla.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit pyramis, cuius baſis triangulum a b c; </s>
            <s xml:space="preserve">axis d e; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">gra
              <lb/>
            uitatis centrum _K_. </s>
            <s xml:space="preserve">Dico lineam d k ipſius _K_ e triplam eſſe.
              <lb/>
            </s>
            <s xml:space="preserve">trianguli enim b d c centrum grauitatis ſit punctum f; </s>
            <s xml:space="preserve">triã
              <lb/>
            guli a d c centrũ g; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">trianguli a d b ſit h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iungantur a f,
              <lb/>
            b g, c h. </s>
            <s xml:space="preserve">Quoniam igitur centrũ grauitatis pyramidis in axe
              <lb/>
            cõſiſtit: </s>
            <s xml:space="preserve">ſuntq; </s>
            <s xml:space="preserve">d e, a f, b g, c h eiuſdẽ pyramidis axes: </s>
            <s xml:space="preserve">conue
              <lb/>
              <anchor type="note" xlink:label="note-0167-01a" xlink:href="note-0167-01"/>
            nient omnes in idẽ punctũ _k_, quod eſt grauitatis centrum.
              <lb/>
            </s>
            <s xml:space="preserve">Itaque animo concipiamus hanc pyramidem diuiſam in
              <lb/>
            quatuor pyramides, quarum baſes ſint ipſa pyramidis
              <lb/>
            triangula; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">axis pun-
              <lb/>
              <anchor type="handwritten" xlink:label="hd-0167-01a" xlink:href="hd-0167-01"/>
              <anchor type="figure" xlink:label="fig-0167-01a" xlink:href="fig-0167-01"/>
            ctum k quæ quidem py-
              <lb/>
            ramides inter ſe æquales
              <lb/>
            ſunt, ut demõſtrabitur.
              <lb/>
            </s>
            <s xml:space="preserve">Ducatur enĩ per lineas
              <lb/>
            d c, d e planum ſecãs, ut
              <lb/>
            ſit ipſius, & </s>
            <s xml:space="preserve">baſis a b c cõ
              <lb/>
            munis ſectio recta linea
              <lb/>
            c e l: </s>
            <s xml:space="preserve">eiuſdẽ uero & </s>
            <s xml:space="preserve">triã-
              <lb/>
            guli a d b ſitlinea d h l. </s>
            <s xml:space="preserve">
              <lb/>
            erit linea a l æqualis ipſi
              <lb/>
            l b: </s>
            <s xml:space="preserve">nam centrum graui-
              <lb/>
            tatis trianguli conſiſtit
              <lb/>
            in linea, quæ ab angulo
              <lb/>
            ad dimidiam baſim per-
              <lb/>
            ducitur, ex tertia deci-
              <lb/>
            ma Archimedis. </s>
            <s xml:space="preserve">quare
              <lb/>
              <anchor type="note" xlink:label="note-0167-02a" xlink:href="note-0167-02"/>
            triangulum a c l æquale
              <lb/>
            eſt triangulo b c l: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">propterea pyramis, cuius baſis trian-
              <lb/>
            gulum a c l, uertex d, eſt æqualis pyramidi, cuius baſis b c l
              <lb/>
            triangulum, & </s>
            <s xml:space="preserve">idem uertex. </s>
            <s xml:space="preserve">pyramides enim, quæ ab eodẽ
              <lb/>
              <anchor type="note" xlink:label="note-0167-03a" xlink:href="note-0167-03"/>
            </s>
          </p>
        </div>
      </text>
    </echo>