Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div254" type="section" level="1" n="87">
          <p>
            <s xml:id="echoid-s4256" xml:space="preserve">
              <pb file="0170" n="170" rhead="FED. COMMANDINI"/>
            & </s>
            <s xml:id="echoid-s4257" xml:space="preserve">denique punctum h pyramidis a b c d e f grauitatis eſſe
              <lb/>
            centrum, & </s>
            <s xml:id="echoid-s4258" xml:space="preserve">ita in aliis.</s>
            <s xml:id="echoid-s4259" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4260" xml:space="preserve">Sit conus, uel coni portio axem habens b d: </s>
            <s xml:id="echoid-s4261" xml:space="preserve">ſecetur que
              <lb/>
            plano per axem, quod ſectionem faciat triangulum a b c:
              <lb/>
            </s>
            <s xml:id="echoid-s4262" xml:space="preserve">& </s>
            <s xml:id="echoid-s4263" xml:space="preserve">b d axis diuidatur in e, ita ut b e ipſius e d ſit tripla. </s>
            <s xml:id="echoid-s4264" xml:space="preserve">
              <lb/>
            Dico punctum e coni, uel coni portionis, grauitatis
              <lb/>
            eſſe centrum. </s>
            <s xml:id="echoid-s4265" xml:space="preserve">Sienim fieri poteſt, ſit centrum f: </s>
            <s xml:id="echoid-s4266" xml:space="preserve">& </s>
            <s xml:id="echoid-s4267" xml:space="preserve">pro-
              <lb/>
            ducatur e f extra figuram in g. </s>
            <s xml:id="echoid-s4268" xml:space="preserve">quam uero proportionem
              <lb/>
            habet g e ad e f, habeat baſis coni, uel coni portionis, hoc
              <lb/>
            eſt circulus, uel ellipſis circa diametrum a c ad aliud ſpa-
              <lb/>
            cium, in quo h. </s>
            <s xml:id="echoid-s4269" xml:space="preserve">Itaque in circulo, uel ellipſi plane deſcri-
              <lb/>
            batur rectilinea figura a k l m c n o p, ita ut quæ relinquũ-
              <lb/>
            tur portiones ſint minores ſpacio h: </s>
            <s xml:id="echoid-s4270" xml:space="preserve">& </s>
            <s xml:id="echoid-s4271" xml:space="preserve">intelligatur pyra-
              <lb/>
            mis baſim habens rectilineam figuram a K l m c n o p, & </s>
            <s xml:id="echoid-s4272" xml:space="preserve">
              <lb/>
            axem b d; </s>
            <s xml:id="echoid-s4273" xml:space="preserve">cuius quidem grauitatis centrum erit punctum
              <lb/>
            e, ut iam demonſtrauimus. </s>
            <s xml:id="echoid-s4274" xml:space="preserve">Et quoniam portiones ſunt
              <lb/>
            minores ſpacio h, circulus, uel ellipſis ad portiones ma-
              <lb/>
              <figure xlink:label="fig-0170-01" xlink:href="fig-0170-01a" number="125">
                <image file="0170-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0170-01"/>
              </figure>
            iorem proportionem habet, quam g e a d e f. </s>
            <s xml:id="echoid-s4275" xml:space="preserve">ſed ut circu-
              <lb/>
            lus, uel ellipſis ad figuram rectilineam ſibi inſcriptam, ita
              <lb/>
            conus, uel coni portio ad pyramidem, quæ figuram rectili-
              <lb/>
            neam pro baſi habet; </s>
            <s xml:id="echoid-s4276" xml:space="preserve">& </s>
            <s xml:id="echoid-s4277" xml:space="preserve">altitudinem æqualem: </s>
            <s xml:id="echoid-s4278" xml:space="preserve">etenim </s>
          </p>
        </div>
      </text>
    </echo>