Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
< >
page |< < (35) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div268" type="section" level="1" n="91">
          <pb o="35" file="0181" n="181" rhead="DE CENTRO GRAVIT. SOLID."/>
          <p>
            <s xml:id="echoid-s4500" xml:space="preserve">Sit ſruſtum a e a pyramide, quæ triangularem baſim ha-
              <lb/>
            beat abſciſſum: </s>
            <s xml:id="echoid-s4501" xml:space="preserve">cuius maior baſis triangulum a b c, minor
              <lb/>
            d e f; </s>
            <s xml:id="echoid-s4502" xml:space="preserve">& </s>
            <s xml:id="echoid-s4503" xml:space="preserve">axis g h. </s>
            <s xml:id="echoid-s4504" xml:space="preserve">ducto autem plano per axem & </s>
            <s xml:id="echoid-s4505" xml:space="preserve">per lineã
              <lb/>
            d a, quod ſectionem faciat d a k l quadrilaterum; </s>
            <s xml:id="echoid-s4506" xml:space="preserve">puncta
              <lb/>
            K l lineas b c, e f bifariam ſecabunt. </s>
            <s xml:id="echoid-s4507" xml:space="preserve">nam cum g h ſit axis
              <lb/>
            ſruſti: </s>
            <s xml:id="echoid-s4508" xml:space="preserve">erit h centrum grauitatis trianguli a b c: </s>
            <s xml:id="echoid-s4509" xml:space="preserve">& </s>
            <s xml:id="echoid-s4510" xml:space="preserve">g
              <lb/>
            centrum trianguli d e f: </s>
            <s xml:id="echoid-s4511" xml:space="preserve">cen-
              <lb/>
              <figure xlink:label="fig-0181-01" xlink:href="fig-0181-01a" number="134">
                <image file="0181-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0181-01"/>
              </figure>
              <note position="right" xlink:label="note-0181-01" xlink:href="note-0181-01a" xml:space="preserve">3. diffi. hu
                <lb/>
              ius.</note>
            trum uero cuiuslibet triangu
              <lb/>
            li eſt in recta linea, quæ ab an-
              <lb/>
            gulo ipſius ad dimidiã baſim
              <lb/>
            ducitur ex decimatertia primi
              <lb/>
            libri Archimedis de cẽtro gra
              <lb/>
            uitatis planorum. </s>
            <s xml:id="echoid-s4512" xml:space="preserve">quare cen-
              <lb/>
              <note position="right" xlink:label="note-0181-02" xlink:href="note-0181-02a" xml:space="preserve">Vltima e-
                <lb/>
              auſdẽ libri
                <lb/>
              Archime-
                <lb/>
              dis.</note>
            trũ grauitatis trapezii b c f e
              <lb/>
            eſt in linea _K_ l, quod ſit m: </s>
            <s xml:id="echoid-s4513" xml:space="preserve">& </s>
            <s xml:id="echoid-s4514" xml:space="preserve">à
              <lb/>
            puncto m ad axem ducta m n
              <lb/>
            ipſi a k, uel d l æquidiſtante;
              <lb/>
            </s>
            <s xml:id="echoid-s4515" xml:space="preserve">erit axis g h diuiſus in portio-
              <lb/>
            nes g n, n h, quas diximus: </s>
            <s xml:id="echoid-s4516" xml:space="preserve">ean
              <lb/>
            dem enim proportionem ha-
              <lb/>
            bet g n ad n h, quã l m ad m _k_. </s>
            <s xml:id="echoid-s4517" xml:space="preserve">
              <lb/>
            At l m ad m K habet eam, quã
              <lb/>
            duplum lateris maioris baſis
              <lb/>
            b c una cum latere minoris e f
              <lb/>
            ad duplum lateris e f unà cum
              <lb/>
            later b c, ex ultima eiuſdem
              <lb/>
            libri Archimedis. </s>
            <s xml:id="echoid-s4518" xml:space="preserve">Itaque à li-
              <lb/>
            nea n g abſcindatur, quarta
              <lb/>
            pars, quæ ſit n p: </s>
            <s xml:id="echoid-s4519" xml:space="preserve">& </s>
            <s xml:id="echoid-s4520" xml:space="preserve">ab axe h g abſcindatur itidem
              <lb/>
            quarta pars h o: </s>
            <s xml:id="echoid-s4521" xml:space="preserve">& </s>
            <s xml:id="echoid-s4522" xml:space="preserve">quam proportionem habet fruſtum ad
              <lb/>
            pyramidem, cuius maior baſis eſt triangulum a b c, & </s>
            <s xml:id="echoid-s4523" xml:space="preserve">alti-
              <lb/>
            tudo ipſi æqualis; </s>
            <s xml:id="echoid-s4524" xml:space="preserve">habeat o p ad p q. </s>
            <s xml:id="echoid-s4525" xml:space="preserve">Dico centrum graui-
              <lb/>
            tatis fruſti eſſe in linea p o, & </s>
            <s xml:id="echoid-s4526" xml:space="preserve">in puncto q. </s>
            <s xml:id="echoid-s4527" xml:space="preserve">namque ipſum
              <lb/>
            eſſe in linea g h manifeſte conſtat. </s>
            <s xml:id="echoid-s4528" xml:space="preserve">protractis enim fruſti </s>
          </p>
        </div>
      </text>
    </echo>