Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
< >
page |< < (16) of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="74">
          <pb o="16" file="0144" n="144" rhead="FED. COMMANDINI"/>
          <p>
            <s xml:space="preserve">SIT pyramis, cuius baſis triangulum a b c; </s>
            <s xml:space="preserve">axis d e: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            ſecetur plano baſi æquidiſtante; </s>
            <s xml:space="preserve">quod ſectionẽ faciat f g h;
              <lb/>
            </s>
            <s xml:space="preserve">occurratq; </s>
            <s xml:space="preserve">axi in puncto k. </s>
            <s xml:space="preserve">Dico f g h triangulum eſſe, ipſi
              <lb/>
            a b c ſimile; </s>
            <s xml:space="preserve">cuius grauitatis centrum eſt K. </s>
            <s xml:space="preserve">Quoniã enim
              <lb/>
              <anchor type="note" xlink:label="note-0144-01a" xlink:href="note-0144-01"/>
            duo plana æquidiſtantia a b c, f g h ſecantur à plano a b d;
              <lb/>
            </s>
            <s xml:space="preserve">communes eorum ſectiones a b, f g æquidiſtantes erunt: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            eadem ratione æquidiſtantes ipſæ b c, g h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">c a, h f. </s>
            <s xml:space="preserve">Quòd
              <lb/>
            cum duæ lineæ f g, g h, duabus a b, b c æquidiſtent, nec
              <lb/>
            ſintin eodem plano; </s>
            <s xml:space="preserve">angulus ad g æqualis eſt angulo ad
              <lb/>
              <anchor type="note" xlink:label="note-0144-02a" xlink:href="note-0144-02"/>
            b: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſimiliter angulus ad h angulo ad c: </s>
            <s xml:space="preserve">angulusq; </s>
            <s xml:space="preserve">ad f ei,
              <lb/>
            qui ad a eſt æqualis. </s>
            <s xml:space="preserve">triangulum igitur f g h ſimile eſt tri-
              <lb/>
            angulo a b c. </s>
            <s xml:space="preserve">At uero punctum k centrum eſſe grauita-
              <lb/>
            tis trianguli f g h hoc modo oſtendemus. </s>
            <s xml:space="preserve">Ducantur pla-
              <lb/>
            na per axem, & </s>
            <s xml:space="preserve">per lineas d a, d b, d c: </s>
            <s xml:space="preserve">erunt communes ſe-
              <lb/>
              <anchor type="note" xlink:label="note-0144-03a" xlink:href="note-0144-03"/>
            ctiones f K, a e æquidiſtantes: </s>
            <s xml:space="preserve">pariterq; </s>
            <s xml:space="preserve">k g, e b; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">k h, e c:
              <lb/>
            </s>
            <s xml:space="preserve">quare angulus k f h angulo e a c; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">angulus k f g ipſi e a b
              <lb/>
              <anchor type="note" xlink:label="note-0144-04a" xlink:href="note-0144-04"/>
            eſt æqualis. </s>
            <s xml:space="preserve">Eadem ratione
              <lb/>
              <anchor type="figure" xlink:label="fig-0144-01a" xlink:href="fig-0144-01"/>
            anguli ad g angulis ad b: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            anguli ad h iis, qui ad c æ-
              <lb/>
            quales erunt. </s>
            <s xml:space="preserve">ergo puncta
              <lb/>
            e _K_ in triangulis a b c, f g h
              <lb/>
            ſimiliter ſunt poſita, per ſe-
              <lb/>
            xtam poſitionem Archime-
              <lb/>
            dis in libro de centro graui-
              <lb/>
            tatis planorum. </s>
            <s xml:space="preserve">Sed cum e
              <lb/>
            ſit centrum grauitatis trian
              <lb/>
            guli a b c, erit ex undecíma
              <lb/>
            propoſitione eiuſdem libri,
              <lb/>
            & </s>
            <s xml:space="preserve">K trianguli f g h grauita
              <lb/>
            tis centrum. </s>
            <s xml:space="preserve">id quod demonſtrare oportebat. </s>
            <s xml:space="preserve">Non aliter
              <lb/>
            in ceteris pyramidibus, quod propoſitum eſt demonſtra-
              <lb/>
            bitur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <note position="left" xlink:label="note-0144-01" xlink:href="note-0144-01a" xml:space="preserve">16. unde
              <lb/>
            cimi</note>
            <note position="left" xlink:label="note-0144-02" xlink:href="note-0144-02a" xml:space="preserve">10. undeci
              <lb/>
            mi.</note>
            <note position="left" xlink:label="note-0144-03" xlink:href="note-0144-03a" xml:space="preserve">16. unde-
              <lb/>
            cimi</note>
            <note position="left" xlink:label="note-0144-04" xlink:href="note-0144-04a" xml:space="preserve">10. unde-
              <lb/>
            cimi</note>
            <figure xlink:label="fig-0144-01" xlink:href="fig-0144-01a">
              <image file="0144-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0144-01"/>
            </figure>
          </div>
        </div>
      </text>
    </echo>