Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
71
30
72
73
37
74
75
32
76
77
25
78
79
34
80
81
35
82
83
36
84
85
37
86
87
38
88
89
39
90
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
FED. COMMANDINI
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
88
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
file
="
0172
"
n
="
172
"
rhead
="
FED. COMMANDINI
"/>
Dico eas proportion ales eſſe in proportione, quæ eſt la-
<
lb
/>
teris a b adlatus d e, itaut earum maior ſit a b c e, me-
<
lb
/>
dia a d c e, & </
s
>
<
s
xml:space
="
preserve
">minor d e f c. </
s
>
<
s
xml:space
="
preserve
">Quoniam enim lineæ d e,
<
lb
/>
a b æquidiſtant; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">interipſas ſunt triangula a b e, a d e;
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">erit triangulum a b e
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0172-01a
"
xlink:href
="
fig-0172-01
"/>
<
anchor
type
="
note
"
xlink:label
="
note-0172-01a
"
xlink:href
="
note-0172-01
"/>
ad triangulum a d e,
<
lb
/>
ut linea a b ad lineam
<
lb
/>
d e. </
s
>
<
s
xml:space
="
preserve
">ut autem triangu
<
lb
/>
lum a b e ad triangu-
<
lb
/>
lum a d e, ita pyramis
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0172-02a
"
xlink:href
="
note-0172-02
"/>
a b e c ad pyramidem
<
lb
/>
a d e c: </
s
>
<
s
xml:space
="
preserve
">habent enim
<
lb
/>
altitudinem eandem,
<
lb
/>
quæ eſt à puncto c ad
<
lb
/>
planum, in quo qua-
<
lb
/>
drilaterum a b e d. </
s
>
<
s
xml:space
="
preserve
">er-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0172-03a
"
xlink:href
="
note-0172-03
"/>
go ut a b ad d e, ita pyramis a b e c ad pyramidem a d e c.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">Rurſus quoniam æquidiſtantes ſunt a c, d f; </
s
>
<
s
xml:space
="
preserve
">erit eadem
<
lb
/>
ratione pyramis a d c e ad pyramidem c d f e, ut a c ad
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0172-04a
"
xlink:href
="
note-0172-04
"/>
d f. </
s
>
<
s
xml:space
="
preserve
">Sed ut a c a l d f, ita a b ad d e, quoniam triangula
<
lb
/>
a b c, d e f ſimilia ſunt, ex nona huius. </
s
>
<
s
xml:space
="
preserve
">quare ut pyramis
<
lb
/>
a b c e ad pyramidem a d c e, ita pyramis a d c e ad ipſam
<
lb
/>
d e f c. </
s
>
<
s
xml:space
="
preserve
">fruſtum igitur a b c d e f diuiditur in tres pyramides
<
lb
/>
proportionales in ea proportione, quæ eſt lateris a b ad d e
<
lb
/>
latus, & </
s
>
<
s
xml:space
="
preserve
">earum maior eſt c a b e, media a d c e, & </
s
>
<
s
xml:space
="
preserve
">minor
<
lb
/>
d e f c. </
s
>
<
s
xml:space
="
preserve
">quod demonſtrare oportebat.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
1
">
<
figure
xlink:label
="
fig-0172-01
"
xlink:href
="
fig-0172-01a
">
<
image
file
="
0172-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0172-01
"/>
</
figure
>
<
note
position
="
left
"
xlink:label
="
note-0172-01
"
xlink:href
="
note-0172-01a
"
xml:space
="
preserve
">1. ſextí.</
note
>
<
note
position
="
left
"
xlink:label
="
note-0172-02
"
xlink:href
="
note-0172-02a
"
xml:space
="
preserve
">5. duodeci
<
lb
/>
mi.</
note
>
<
note
position
="
left
"
xlink:label
="
note-0172-03
"
xlink:href
="
note-0172-03a
"
xml:space
="
preserve
">11. quinti.</
note
>
<
note
position
="
left
"
xlink:label
="
note-0172-04
"
xlink:href
="
note-0172-04a
"
xml:space
="
preserve
">4 ſexti.</
note
>
</
div
>
</
div
>
<
div
type
="
section
"
level
="
1
"
n
="
89
">
<
head
xml:space
="
preserve
">PROBLEMA V. PROPOSITIO XXIIII.</
head
>
<
p
>
<
s
xml:space
="
preserve
">
<
emph
style
="
sc
">Qvodlibet</
emph
>
fruſtum pyramidis, uel coni,
<
lb
/>
uel coni portionis, plano baſi æquidiſtanti ita ſe-
<
lb
/>
care, ut ſectio ſit proportionalis inter maiorem,
<
lb
/>
& </
s
>
<
s
xml:space
="
preserve
">minorem baſim.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>