Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="96">
          <p>
            <s xml:space="preserve">
              <pb file="0204" n="204" rhead="FED. COMMANDINI"/>
            ioris baſis ad quadratum minoris: </s>
            <s xml:space="preserve">centrum ſit in
              <lb/>
            eo axis puncto, quo ita diuiditur ut pars, quæ mi
              <lb/>
            norem baſim attingit ad alteram partem eandem
              <lb/>
            proportionem habeat, quam dempto quadrato
              <lb/>
            minoris baſis à duabus tertiis quadrati maioris,
              <lb/>
            habet id, quod reliquum eſt unà cum portione à
              <lb/>
            tertia quadrati maioris parte dempta, ad reliquà
              <lb/>
            eiuſdem tertiæ portionem.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">SIT fruſtum à portione rectanguli conoidis abſciſſum
              <lb/>
            a b c d, cuius maior baſis circulus, uel ellipſis circa diame-
              <lb/>
            trum b c, minor circa diametrum a d; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">axis e f. </s>
            <s xml:space="preserve">deſcriba-
              <lb/>
            tur autem portio conoidis, à quo illud abſciſſum eſt, & </s>
            <s xml:space="preserve">pla-
              <lb/>
              <anchor type="figure" xlink:label="fig-0204-01a" xlink:href="fig-0204-01"/>
            no per axem ducto ſecetur; </s>
            <s xml:space="preserve">ut ſuperficiei ſectio ſit parabo-
              <lb/>
            le b g c, cuius diameter, & </s>
            <s xml:space="preserve">axis portionis g f: </s>
            <s xml:space="preserve">deinde g f diui
              <lb/>
            datur in puncto h, ita ut g h ſit dupla h f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">rurſus g e in ean
              <lb/>
            dem proportionem diuidatur: </s>
            <s xml:space="preserve">ſitq; </s>
            <s xml:space="preserve">g _k_ ipſius k e dupla. </s>
            <s xml:space="preserve">Iã
              <lb/>
            ex iis, quæ proxime demonſtrauimus, conſtat centrum gra
              <lb/>
            uitatis portionis b g c eſſe h punctum: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">portionis a g c
              <lb/>
            punctum k. </s>
            <s xml:space="preserve">ſumpto igitur infra h punctol, ita ut k h ad h l</s>
          </p>
        </div>
      </text>
    </echo>