Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
< >
page |< < of 213 > >|
ARCHIMEDIS
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="17">
          <p>
            <s xml:space="preserve">
              <pb file="0024" n="24" rhead="ARCHIMEDIS"/>
            in linea ft. </s>
            <s xml:space="preserve">nam ſit primum figura maior dimidia ſphære:
              <lb/>
            </s>
            <s xml:space="preserve">ſitq; </s>
            <s xml:space="preserve">in dimidia ſphæra ſphæræ centrum t; </s>
            <s xml:space="preserve">in minori por-
              <lb/>
            tioneſit centrum p; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in maiori _k_: </s>
            <s xml:space="preserve">per _k_ uero, & </s>
            <s xml:space="preserve">terræ cen
              <lb/>
            trum l ducatur _k_ l ſecans circunferentiam e f h in pun-
              <lb/>
            cto n. </s>
            <s xml:space="preserve">Quoniam igitur unaquæque ſphæræportio axem
              <lb/>
              <anchor type="note" xlink:label="note-0024-01a" xlink:href="note-0024-01"/>
            habet in linea, quæ à cẽtro ſphæræ ad cius baſim perpen-
              <lb/>
            dicularis ducitur: </s>
            <s xml:space="preserve">habetq; </s>
            <s xml:space="preserve">in axe grauitatis centrum:
              <lb/>
            </s>
            <s xml:space="preserve">portionis in humido demerſæ, quæ ex duabus ſphæræ
              <lb/>
            portionibus conſtat, axis erit in perpendiculari per _k_ du-
              <lb/>
            cta. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">idcirco centrum grauitatis ipſius erit in linea n _k_,
              <lb/>
            quod ſit r. </s>
            <s xml:space="preserve">ſed totius portionis grauitatis centrum eſt in li
              <lb/>
              <anchor type="note" xlink:label="note-0024-02a" xlink:href="note-0024-02"/>
            nea f t inter _k_, & </s>
            <s xml:space="preserve">f, quod ſit x. </s>
            <s xml:space="preserve">reliquæ ergo figuræ, quæ eſt
              <lb/>
              <anchor type="note" xlink:label="note-0024-03a" xlink:href="note-0024-03"/>
            extra humidum, centrum erit in linea r x producta ad par
              <lb/>
            tes x; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">aſſumpta ex ea, linea quadam, quæ ad r x eandem
              <lb/>
            proportionem habeat, quam grauitas portionis in humi-
              <lb/>
            do demerſæ habet ad grauitatem figuræ, quæ eſt extra hu-
              <lb/>
            midum. </s>
            <s xml:space="preserve">Sit autem s centrum dictæ figuræ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per s duca-
              <lb/>
            tur perpendicularis l s. </s>
            <s xml:space="preserve">Feretur ergo grauitas figuræ qui-
              <lb/>
              <anchor type="note" xlink:label="note-0024-04a" xlink:href="note-0024-04"/>
            dem, quæ extra humidum per rectam s l deorſum; </s>
            <s xml:space="preserve">portio
              <lb/>
            nis autem, quæ in humido, ſurſum per rectam r l. </s>
            <s xml:space="preserve">quare
              <lb/>
            non manebit figura: </s>
            <s xml:space="preserve">ſed partes eius, quæ ſunt ad e, deor-
              <lb/>
            ſum; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quæ ad h ſurſum ſerẽtur: </s>
            <s xml:space="preserve">idq; </s>
            <s xml:space="preserve">cõtinenter fiet, quoad
              <lb/>
            ſ t ſit ſecundum perpendicularem. </s>
            <s xml:space="preserve">Eodem modo in aliis
              <lb/>
            portionibus idem demonſtrabitur.</s>
            <s xml:space="preserve">]</s>
          </p>
          <div type="float" level="2" n="2">
            <note position="right" xlink:label="note-0023-03" xlink:href="note-0023-03a" xml:space="preserve">Suppleta
              <lb/>
            a Federi-
              <lb/>
            co Cõm.</note>
            <figure xlink:label="fig-0023-01" xlink:href="fig-0023-01a">
              <image file="0023-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0023-01"/>
            </figure>
            <note position="left" xlink:label="note-0024-01" xlink:href="note-0024-01a" xml:space="preserve">C</note>
            <note position="left" xlink:label="note-0024-02" xlink:href="note-0024-02a" xml:space="preserve">D</note>
            <note position="left" xlink:label="note-0024-03" xlink:href="note-0024-03a" xml:space="preserve">E</note>
            <note position="left" xlink:label="note-0024-04" xlink:href="note-0024-04a" xml:space="preserve">F</note>
          </div>
          <figure>
            <image file="0024-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0024-01"/>
          </figure>
        </div>
      </text>
    </echo>