Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
91
40
92
93
41
94
95
42
96
97
43
98
99
44
100
101
43
102
103
104
105
106
107
108
109
110
111
112
113
1
114
115
2
116
117
3
118
119
4
120
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(24)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div242
"
type
="
section
"
level
="
1
"
n
="
84
">
<
p
>
<
s
xml:id
="
echoid-s3954
"
xml:space
="
preserve
">
<
pb
o
="
24
"
file
="
0159
"
n
="
159
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
los contineant. </
s
>
<
s
xml:id
="
echoid-s3955
"
xml:space
="
preserve
">Dico ſolidum a b ad ſolidum a c eãdem ha
<
lb
/>
bere proportionem, quam axis d e ad axem e f. </
s
>
<
s
xml:id
="
echoid-s3956
"
xml:space
="
preserve
">Sienim
<
lb
/>
axes in eadem recta linea fuerint conſtituti, hæc duo ſoli-
<
lb
/>
da, in unum, atque i @m ſolidum conuenient. </
s
>
<
s
xml:id
="
echoid-s3957
"
xml:space
="
preserve
">quare ex
<
lb
/>
iis, quæ proxime tradita ſunt, habebit ſolidum a b ad ſo-
<
lb
/>
lidum a c eandem proportionem, quam axis d e ad e f
<
lb
/>
axem. </
s
>
<
s
xml:id
="
echoid-s3958
"
xml:space
="
preserve
">Siuero axes non ſint in eadem recta linea, demittan
<
lb
/>
tur a punctis d, f perpendiculares ad baſis planum, d g, fh:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3959
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3960
"
xml:space
="
preserve
">iungantur e g, e h. </
s
>
<
s
xml:id
="
echoid-s3961
"
xml:space
="
preserve
">Quoniam igitur axes cum baſibus
<
lb
/>
æquales angulos eontinent, erit d e g angulus æqualis an-
<
lb
/>
gulo f e h: </
s
>
<
s
xml:id
="
echoid-s3962
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3963
"
xml:space
="
preserve
">ſunt
<
lb
/>
<
figure
xlink:label
="
fig-0159-01
"
xlink:href
="
fig-0159-01a
"
number
="
114
">
<
image
file
="
0159-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0159-01
"/>
</
figure
>
anguli ad g h re-
<
lb
/>
cti, quare & </
s
>
<
s
xml:id
="
echoid-s3964
"
xml:space
="
preserve
">re-
<
lb
/>
liquus e d g æqua
<
lb
/>
lis erit reliquo
<
lb
/>
e fh: </
s
>
<
s
xml:id
="
echoid-s3965
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3966
"
xml:space
="
preserve
">triangu-
<
lb
/>
lum d e g triãgu-
<
lb
/>
lo f e h ſimile. </
s
>
<
s
xml:id
="
echoid-s3967
"
xml:space
="
preserve
">er-
<
lb
/>
go g d ad d e eſt,
<
lb
/>
ut h f ad f e: </
s
>
<
s
xml:id
="
echoid-s3968
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3969
"
xml:space
="
preserve
">per
<
lb
/>
mutando g d ad
<
lb
/>
h f, ut d e ad e f.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3970
"
xml:space
="
preserve
">Sed ſolidum a b
<
lb
/>
ad ſolidum a c
<
lb
/>
eandem propor-
<
lb
/>
tionem habet,
<
lb
/>
quam d g altitu-
<
lb
/>
do ad altitudinẽ
<
lb
/>
f h. </
s
>
<
s
xml:id
="
echoid-s3971
"
xml:space
="
preserve
">ergo & </
s
>
<
s
xml:id
="
echoid-s3972
"
xml:space
="
preserve
">ean-
<
lb
/>
dẽ habebit, quã
<
lb
/>
axis d e a l e f axẽ</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3973
"
xml:space
="
preserve
">Poſtremo ſint
<
lb
/>
ſolida parallelepi
<
lb
/>
peda a b, c d </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>