Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
111
112
113 1
114
115 2
116
117 3
118
119 4
120
< >
page |< < (35) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="91">
          <pb o="35" file="0181" n="181" rhead="DE CENTRO GRAVIT. SOLID."/>
          <p>
            <s xml:space="preserve">Sit ſruſtum a e a pyramide, quæ triangularem baſim ha-
              <lb/>
            beat abſciſſum: </s>
            <s xml:space="preserve">cuius maior baſis triangulum a b c, minor
              <lb/>
            d e f; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">axis g h. </s>
            <s xml:space="preserve">ducto autem plano per axem & </s>
            <s xml:space="preserve">per lineã
              <lb/>
            d a, quod ſectionem faciat d a k l quadrilaterum; </s>
            <s xml:space="preserve">puncta
              <lb/>
            K l lineas b c, e f bifariam ſecabunt. </s>
            <s xml:space="preserve">nam cum g h ſit axis
              <lb/>
            ſruſti: </s>
            <s xml:space="preserve">erit h centrum grauitatis trianguli a b c: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">g
              <lb/>
            centrum trianguli d e f: </s>
            <s xml:space="preserve">cen-
              <lb/>
              <anchor type="figure" xlink:label="fig-0181-01a" xlink:href="fig-0181-01"/>
              <anchor type="note" xlink:label="note-0181-01a" xlink:href="note-0181-01"/>
            trum uero cuiuslibet triangu
              <lb/>
            li eſt in recta linea, quæ ab an-
              <lb/>
            gulo ipſius ad dimidiã baſim
              <lb/>
            ducitur ex decimatertia primi
              <lb/>
            libri Archimedis de cẽtro gra
              <lb/>
            uitatis planorum. </s>
            <s xml:space="preserve">quare cen-
              <lb/>
              <anchor type="note" xlink:label="note-0181-02a" xlink:href="note-0181-02"/>
            trũ grauitatis trapezii b c f e
              <lb/>
            eſt in linea _K_ l, quod ſit m: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">à
              <lb/>
            puncto m ad axem ducta m n
              <lb/>
            ipſi a k, uel d l æquidiſtante;
              <lb/>
            </s>
            <s xml:space="preserve">erit axis g h diuiſus in portio-
              <lb/>
            nes g n, n h, quas diximus: </s>
            <s xml:space="preserve">ean
              <lb/>
            dem enim proportionem ha-
              <lb/>
            bet g n ad n h, quã l m ad m _k_. </s>
            <s xml:space="preserve">
              <lb/>
            At l m ad m K habet eam, quã
              <lb/>
            duplum lateris maioris baſis
              <lb/>
            b c una cum latere minoris e f
              <lb/>
            ad duplum lateris e f unà cum
              <lb/>
            later b c, ex ultima eiuſdem
              <lb/>
            libri Archimedis. </s>
            <s xml:space="preserve">Itaque à li-
              <lb/>
            nea n g abſcindatur, quarta
              <lb/>
            pars, quæ ſit n p: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ab axe h g abſcindatur itidem
              <lb/>
            quarta pars h o: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quam proportionem habet fruſtum ad
              <lb/>
            pyramidem, cuius maior baſis eſt triangulum a b c, & </s>
            <s xml:space="preserve">alti-
              <lb/>
            tudo ipſi æqualis; </s>
            <s xml:space="preserve">habeat o p ad p q. </s>
            <s xml:space="preserve">Dico centrum graui-
              <lb/>
            tatis fruſti eſſe in linea p o, & </s>
            <s xml:space="preserve">in puncto q. </s>
            <s xml:space="preserve">namque ipſum
              <lb/>
            eſſe in linea g h manifeſte conſtat. </s>
            <s xml:space="preserve">protractis enim fruſti pla</s>
          </p>
        </div>
      </text>
    </echo>