Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
111
112
113 1
114
115 2
116
117 3
118
119 4
120
< >
page |< < (45) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="94">
          <p>
            <s xml:space="preserve">
              <pb o="45" file="0201" n="201" rhead="DE CENTRO GRAVIT. SOLID."/>
            ad punctum ω. </s>
            <s xml:space="preserve">Sed quoniam π circum ſcripta itidem alia
              <lb/>
            figura æquali interuallo ad portionis centrum accedit, ubi
              <lb/>
            primum φ applieuerit ſe ad ω, & </s>
            <s xml:space="preserve">π ad punctũ ψ, hoc eſt ad
              <lb/>
            portionis centrum ſe applicabit. </s>
            <s xml:space="preserve">quod fieri nullo modo
              <lb/>
            poſſe perſpicuum eſt. </s>
            <s xml:space="preserve">non aliter idem abſurdum ſequetur,
              <lb/>
            ſi ponamus centrum portionis recedere à medio ad par-
              <lb/>
            tes ω; </s>
            <s xml:space="preserve">eſſet enim aliquando centrum figuræ inſcriptæ idem
              <lb/>
            quod portionis centrũ. </s>
            <s xml:space="preserve">ergo punctum e centrum erit gra
              <lb/>
            uitatis portionis a b c. </s>
            <s xml:space="preserve">quod demonſtrare oportebat.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0195-01" xlink:href="fig-0195-01a">
              <image file="0195-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0195-01"/>
            </figure>
            <note position="right" xlink:label="note-0195-01" xlink:href="note-0195-01a" xml:space="preserve">7. huius</note>
            <figure xlink:label="fig-0196-01" xlink:href="fig-0196-01a">
              <image file="0196-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0196-01"/>
            </figure>
            <note position="left" xlink:label="note-0196-01" xlink:href="note-0196-01a" xml:space="preserve">8. primi
              <lb/>
            libri Ar-
              <lb/>
            chimedis</note>
            <note position="left" xlink:label="note-0196-02" xlink:href="note-0196-02a" xml:space="preserve">11. duo-
              <lb/>
            decimi.</note>
            <note position="left" xlink:label="note-0196-03" xlink:href="note-0196-03a" xml:space="preserve">15. quinti</note>
            <note position="left" xlink:label="note-0196-04" xlink:href="note-0196-04a" xml:space="preserve">2. duode-
              <lb/>
            cimi.</note>
            <note position="right" xlink:label="note-0197-01" xlink:href="note-0197-01a" xml:space="preserve">20. primi
              <lb/>
            conicorũ</note>
            <figure xlink:label="fig-0198-01" xlink:href="fig-0198-01a">
              <image file="0198-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0198-01"/>
            </figure>
            <note position="right" xlink:label="note-0199-01" xlink:href="note-0199-01a" xml:space="preserve">19. quinti</note>
            <figure xlink:label="fig-0200-01" xlink:href="fig-0200-01a">
              <image file="0200-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0200-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Quod autem ſupra demõſtratum eſt in portione conoi-
              <lb/>
            dis recta per figuras, quæ ex cylindris æqualem altitudi-
              <lb/>
            dinem habentibus conſtant, idem ſimiliter demonſtrabi-
              <lb/>
            mus per figuras ex cylindri portionibus conſtantes in ea
              <lb/>
            portione, quæ plano non ad axem recto abſcinditur. </s>
            <s xml:space="preserve">ut
              <lb/>
            enim tradidimus in commentariis in undecimam propoſi
              <lb/>
            tionem libri Archimedis de conoidibus & </s>
            <s xml:space="preserve">ſphæroidibus.
              <lb/>
            </s>
            <s xml:space="preserve">portiones cylindri, quæ æquali ſunt altitudine eam inter ſe
              <lb/>
            ſe proportionem habent, quam ipſarum baſes; </s>
            <s xml:space="preserve">baſes autẽ
              <lb/>
            quæ ſunt ellipſes ſimiles eandem proportionem habere,
              <lb/>
              <anchor type="note" xlink:label="note-0201-01a" xlink:href="note-0201-01"/>
            quam quadrata diametrorum eiuſdem rationis, ex corol-
              <lb/>
            lario ſeptimæ propoſitionis libri de conoidibus, & </s>
            <s xml:space="preserve">ſphæ-
              <lb/>
            roidibus, manifeſte apparet.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <note position="right" xlink:label="note-0201-01" xlink:href="note-0201-01a" xml:space="preserve">corol. 15
              <lb/>
            deconoi-
              <lb/>
            dibus &
              <lb/>
            ſphæroi-
              <lb/>
            dibus.</note>
          </div>
        </div>
        <div type="section" level="1" n="95">
          <head xml:space="preserve">THEOREMA XXIIII. PROPOSITIO XXX.</head>
          <p>
            <s xml:space="preserve">SI à portione conoidis rectanguli alia portio
              <lb/>
            abſcindatur, plano baſi æquidiſtante; </s>
            <s xml:space="preserve">habebit
              <lb/>
            portio tota ad eam, quæ abſciſſa eſt, duplam pro
              <lb/>
            portio nem eius, quæ eſt baſis maioris portionis
              <lb/>
            ad baſi m minoris, uel quæ axis maioris ad axem
              <lb/>
            minoris.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>