Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
111
112
113 1
114
115 2
116
117 3
118
119 4
120
< >
page |< < (46) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="95">
          <p>
            <s xml:space="preserve">
              <pb o="46" file="0203" n="203" rhead="DE CENTRO GRAVIT. SOLID."/>
            ro ita demonſtrabitur. </s>
            <s xml:space="preserve">Ducatur à puncto b ad planum ba-
              <lb/>
            ſis a c perpendicularis linea b h, quæ ipſam e fin K ſecet.
              <lb/>
            </s>
            <s xml:space="preserve">erit b h altitudo coni, uel coni portionis a b c: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">b K altitu
              <lb/>
              <anchor type="note" xlink:label="note-0203-01a" xlink:href="note-0203-01"/>
            do e f g. </s>
            <s xml:space="preserve">Quod cum lineæ a c, e f inter ſe æ quidiſtent, ſunt
              <lb/>
            enim planorum æ quidiſtantium ſectiones: </s>
            <s xml:space="preserve">habebit d b ad
              <lb/>
              <anchor type="note" xlink:label="note-0203-02a" xlink:href="note-0203-02"/>
            b g proportionem ean dem, quam h b ad b k. </s>
            <s xml:space="preserve">quare por-
              <lb/>
            tio conoidis a b c ad portionem e f g proportionem habet
              <lb/>
            compoſitam ex proportione baſis a c ad baſim e f; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ex
              <lb/>
            proportione d b axis ad axem b g. </s>
            <s xml:space="preserve">Sed circulus, uel
              <lb/>
              <anchor type="note" xlink:label="note-0203-03a" xlink:href="note-0203-03"/>
            ellipſis circa diametrum a c ad circulum, uel ellipſim
              <lb/>
              <anchor type="note" xlink:label="note-0203-04a" xlink:href="note-0203-04"/>
            circa e f, eſt ut quadratum a c ad quadratum e f; </s>
            <s xml:space="preserve">hoc eſt ut
              <lb/>
            quadratũ a d ad quadratũ e g. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quadratum a d ad quadra
              <lb/>
            tum e g eſt, ut linea d b ad lineam b g. </s>
            <s xml:space="preserve">circulus igitur, uel el
              <lb/>
            lipſis circa diametrum a c ad circulũ, uel ellipſim circa e f,
              <lb/>
              <anchor type="note" xlink:label="note-0203-05a" xlink:href="note-0203-05"/>
            hoc eſt baſis ad baſim eandem proportionem habet, quã
              <lb/>
              <anchor type="note" xlink:label="note-0203-06a" xlink:href="note-0203-06"/>
            d b axis ad axem b g. </s>
            <s xml:space="preserve">ex quibus ſequitur portionem a b c
              <lb/>
            ad portionem e b f habere proportionem duplam eius,
              <lb/>
            quæ eſt baſis a c ad bafim e f: </s>
            <s xml:space="preserve">uel axis d b ad b g axem. </s>
            <s xml:space="preserve">quod
              <lb/>
            demonſtrandum proponebatur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0202-01" xlink:href="fig-0202-01a">
              <image file="0202-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0202-01"/>
            </figure>
            <note position="right" xlink:label="note-0203-01" xlink:href="note-0203-01a" xml:space="preserve">16. unde-
              <lb/>
            cimi.</note>
            <note position="right" xlink:label="note-0203-02" xlink:href="note-0203-02a" xml:space="preserve">4 ſexti.</note>
            <note position="right" xlink:label="note-0203-03" xlink:href="note-0203-03a" xml:space="preserve">2. duode
              <lb/>
            cimi</note>
            <note position="right" xlink:label="note-0203-04" xlink:href="note-0203-04a" xml:space="preserve">7. de co-
              <lb/>
            noidibus
              <lb/>
            & ſphæ-
              <lb/>
            roidibus</note>
            <note position="right" xlink:label="note-0203-05" xlink:href="note-0203-05a" xml:space="preserve">15. quinti</note>
            <note position="right" xlink:label="note-0203-06" xlink:href="note-0203-06a" xml:space="preserve">20. primi
              <lb/>
            conicorũ</note>
          </div>
        </div>
        <div type="section" level="1" n="96">
          <head xml:space="preserve">THEOREMA XXV. PROPOSITIO XXXI.</head>
          <p>
            <s xml:space="preserve">Cuiuslibet fruſti à portione rectanguli conoi
              <lb/>
            dis abſcisſi, centrum grauitatis eſt in axe, ita ut
              <lb/>
            demptis primum à quadrato, quod fit ex diame-
              <lb/>
            tro maioris baſis, tertia ipſius parte, & </s>
            <s xml:space="preserve">duabus
              <lb/>
            tertiis quadrati, quod fit ex diametro baſis mino-
              <lb/>
            ris: </s>
            <s xml:space="preserve">deinde à tertia parte quadrati maioris baſis
              <lb/>
            rurſus dempta portione, ad quam reliquum qua
              <lb/>
            drati baſis maioris unà cum dicta portione duplã
              <lb/>
            proportionem habeat eius, quæ eſt quadrati ma-</s>
          </p>
        </div>
      </text>
    </echo>