Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
Scan
Original
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000500
">
<
pb
pagenum
="
102
"
xlink:href
="
010/01/110.jpg
"/>
<
arrow.to.target
n
="
marg121
"/>
<
lb
/>
nicam rationem
<
expan
abbr
="
deſumptã
">deſumptam</
expan
>
à maiori, vel minori gra
<
lb
/>
uitate, quæ deducitur ex Archimedis doctrina, quòd
<
lb
/>
ſcilicèt fluidum grauius per extruſionem impellerę
<
lb
/>
<
expan
abbr
="
ſursũ
">ſursum</
expan
>
debeat corpora minùs grauia, & hæc eſt cauſa,
<
lb
/>
quare abſque poſitiua leuitate corpora ſursùm
<
expan
abbr
="
aſcẽ-dere
">aſcen
<
lb
/>
dere</
expan
>
debent. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.000501
">
<
margin.target
id
="
marg121
"/>
Cap. 4. poſi
<
lb
/>
tiuam leui
<
lb
/>
tatem noņ
<
lb
/>
dari.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000502
">
<
expan
abbr
="
Cõtra
">Contra</
expan
>
<
expan
abbr
="
perſpicuitatẽ
">perſpicuitatem</
expan
>
ſupradicti ratiocinij
<
expan
abbr
="
obijciũt
">obijciunt</
expan
>
<
lb
/>
primò, quòd
<
emph
type
="
italics
"/>
ſicuti grauiora intra minùs grauia merſa fe
<
lb
/>
runtur deorsùm tanta vi, quæ ſit æqualis differentiæ gra
<
lb
/>
uitatis mobilis ſupra grauitatem medij, constat euidentèr
<
lb
/>
euenturum proportion alitèr in leuioribus intra minùs leuia
<
emph.end
type
="
italics
"/>
<
lb
/>
<
arrow.to.target
n
="
marg122
"/>
<
lb
/>
<
emph
type
="
italics
"/>
contentis ea ſcilicèt in ordine ad leuitatem, ſursùm, non niti
<
lb
/>
ſecundùm menſuram exceſſus ſupra minùs leue ſursùm ni
<
lb
/>
ſura, vt ſimilis ratio perſuadet.
<
emph.end
type
="
italics
"/>
</
s
>
<
s
id
="
s.000503
"> Hoc ſuppoſito veluti cer
<
lb
/>
tum, & euidens reſpondet argumento ſuperius addu
<
lb
/>
cto, aitque
<
emph
type
="
italics
"/>
expirationem calidam reſpectu aquæ valdè le
<
lb
/>
uem ſecundùm menſuram totius ſuæ leuitatis ſursùm niti
<
lb
/>
intra aquam, ac proindè valere ad reſiſtentiam illius cele
<
lb
/>
ritèr ſuperandam, at verò valdè exiguum exceſſum ſupra
<
lb
/>
aerem obtinentem in leuitate ſursùm niti præcisè ſecundum
<
lb
/>
menſuram talis exceſſus, ac proindè non eſſe mirum ſi lentè
<
lb
/>
per aerem aſcendat etiamſi dicatur à leuitate poſitiua in
<
lb
/>
trinſeca moueri.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.000504
">
<
margin.target
id
="
marg122
"/>
Denuò ad
<
lb
/>
miſſa leuita
<
lb
/>
te colligunt
<
lb
/>
ignem cele
<
lb
/>
riùs per a
<
lb
/>
quam, quam
<
lb
/>
per aerem̨
<
lb
/>
<
expan
abbr
="
aſcẽdere
">aſcendere</
expan
>
de
<
lb
/>
bere.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000505
">Itaque ſicuti nos ex Archimedis doctrina deduci
<
lb
/>
mus rationem deſcenſus grauium, & aſcenſus
<
expan
abbr
="
leuiũ
">leuium</
expan
>
<
lb
/>
ex hac ſuppoſitione, quòd corpora omnia ſubluna
<
lb
/>
ria ſint grauia, ſibi perſuadent demonſtrare poſſe ea
<
lb
/>
dem symptomata ſupponendo nedùm corpora aſcen
<
lb
/>
dentia, ſed etiam medium fluidum, in quo
<
expan
abbr
="
aſcendũt
">aſcendunt</
expan
>
</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>