Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Page concordance

< >
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000500">
                <pb pagenum="102" xlink:href="010/01/110.jpg"/>
                <arrow.to.target n="marg121"/>
                <lb/>
              nicam rationem
                <expan abbr="deſumptã">deſumptam</expan>
              à maiori, vel minori gra­
                <lb/>
              uitate, quæ deducitur ex Archimedis doctrina, quòd
                <lb/>
              ſcilicèt fluidum grauius per extruſionem impellerę
                <lb/>
                <expan abbr="ſursũ">ſursum</expan>
              debeat corpora minùs grauia, & hæc eſt cauſa,
                <lb/>
              quare abſque poſitiua leuitate corpora ſursùm
                <expan abbr="aſcẽ-dere">aſcen­
                  <lb/>
                dere</expan>
              debent. </s>
            </p>
            <p type="margin">
              <s id="s.000501">
                <margin.target id="marg121"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="main">
              <s id="s.000502">
                <expan abbr="Cõtra">Contra</expan>
                <expan abbr="perſpicuitatẽ">perſpicuitatem</expan>
              ſupradicti ratiocinij
                <expan abbr="obijciũt">obijciunt</expan>
                <lb/>
              primò, quòd
                <emph type="italics"/>
              ſicuti grauiora intra minùs grauia merſa fe­
                <lb/>
              runtur deorsùm tanta vi, quæ ſit æqualis differentiæ gra­
                <lb/>
              uitatis mobilis ſupra grauitatem medij, constat euidentèr
                <lb/>
              euenturum proportion alitèr in leuioribus intra minùs leuia
                <emph.end type="italics"/>
                <lb/>
                <arrow.to.target n="marg122"/>
                <lb/>
                <emph type="italics"/>
              contentis ea ſcilicèt in ordine ad leuitatem, ſursùm, non niti
                <lb/>
              ſecundùm menſuram exceſſus ſupra minùs leue ſursùm ni­
                <lb/>
              ſura, vt ſimilis ratio perſuadet.
                <emph.end type="italics"/>
              </s>
              <s id="s.000503"> Hoc ſuppoſito veluti cer­
                <lb/>
              tum, & euidens reſpondet argumento ſuperius addu­
                <lb/>
              cto, aitque
                <emph type="italics"/>
              expirationem calidam reſpectu aquæ valdè le­
                <lb/>
              uem ſecundùm menſuram totius ſuæ leuitatis ſursùm niti
                <lb/>
              intra aquam, ac proindè valere ad reſiſtentiam illius cele­
                <lb/>
              ritèr ſuperandam, at verò valdè exiguum exceſſum ſupra
                <lb/>
              aerem obtinentem in leuitate ſursùm niti præcisè ſecundum
                <lb/>
              menſuram talis exceſſus, ac proindè non eſſe mirum ſi lentè
                <lb/>
              per aerem aſcendat etiamſi dicatur à leuitate poſitiua in­
                <lb/>
              trinſeca moueri.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="margin">
              <s id="s.000504">
                <margin.target id="marg122"/>
              Denuò ad­
                <lb/>
              miſſa leuita­
                <lb/>
              te colligunt
                <lb/>
              ignem cele­
                <lb/>
              riùs per a
                <lb/>
              quam, quam
                <lb/>
              per aerem̨
                <lb/>
                <expan abbr="aſcẽdere">aſcendere</expan>
              de­
                <lb/>
              bere.</s>
            </p>
            <p type="main">
              <s id="s.000505">Itaque ſicuti nos ex Archimedis doctrina deduci­
                <lb/>
              mus rationem deſcenſus grauium, & aſcenſus
                <expan abbr="leuiũ">leuium</expan>
                <lb/>
              ex hac ſuppoſitione, quòd corpora omnia ſubluna­
                <lb/>
              ria ſint grauia, ſibi perſuadent demonſtrare poſſe ea­
                <lb/>
              dem symptomata ſupponendo nedùm corpora aſcen­
                <lb/>
              dentia, ſed etiam medium fluidum, in quo
                <expan abbr="aſcendũt">aſcendunt</expan>
              </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>