Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
Scan
Original
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000948
">
<
pb
pagenum
="
185
"
xlink:href
="
010/01/193.jpg
"/>
<
arrow.to.target
n
="
marg238
"/>
<
lb
/>
ponderi R, &
<
expan
abbr
="
quã
">quam</
expan
>
proportionem habet ſemiſſis dia
<
lb
/>
metri AB baſis prædictæ columnæ ad ſuam altitudi
<
lb
/>
nem BC, eamdem habeat pondus R ad aliud pondus
<
lb
/>
S. oſtendendum modò eſt vim ponderis S æqualem
<
lb
/>
eſſe totali reſiſtentiæ contactus duarum
<
expan
abbr
="
prædictarũ
">prædictarum</
expan
>
<
lb
/>
ſuperficierum, ſeù potiùs æqualem eſſe vi, qua vacui
<
lb
/>
reſiſtentia ſuperatur, vel potiùs pondus S ſufficerę
<
lb
/>
ad diuellendam columnam à pauimento directa tra
<
lb
/>
ctione, ſcilicèt detinendo, &
<
expan
abbr
="
transferẽdo
">transferendo</
expan
>
baſim AB
<
lb
/>
ſemper æquidiſtantem plano baſis DE. </
s
>
<
s
id
="
s.000949
">Quia in actu
<
lb
/>
ſeparationis ſuperficiei AB à pauimento debet pun
<
lb
/>
ctum eius B contingere, & inniti ipſi pauimento, &
<
lb
/>
angularitèr ſubleuari terminus oppoſitus A, vnà cum
<
lb
/>
tota baſis ſuperficie AB, efficiendo nimirùm
<
expan
abbr
="
angulũ
">angulum</
expan
>
<
lb
/>
cum pauimenti plano DE; & hic obſeruari debent
<
lb
/>
loca vbi duæ vires applicantur, ſcilicèt reſiſtentia, &
<
lb
/>
eius, quæ eam ſuperat, & per quam directionem tra
<
lb
/>
hunt & vim exercent; & pater, quòd reſiſtentia iņ
<
lb
/>
omnibus
<
expan
abbr
="
pũctis
">punctis</
expan
>
inferioris ſuperficiei AB exiſtit,
<
expan
abbr
="
sũt-que
">sunt
<
lb
/>
que</
expan
>
veluti totidem fibræ
<
expan
abbr
="
perpẽdicularitèr
">perpendicularitèr</
expan
>
erectę ad
<
lb
/>
planum ſubiectum, quæ cum eo coniunguntur colli
<
lb
/>
ganturque; è contrà vis mouens M vectem CB adhi
<
lb
/>
bet circa centrum firmum B, & quia vniuerſa reſi
<
lb
/>
ſtentia vniformiter diſtribuitur per totam baſis ſu
<
lb
/>
perficiem AB, reducitur, & perindè reſiſtit ac ſi iņ
<
lb
/>
centro aggregati prædictarum fibrarum collocatą
<
lb
/>
eſſet, centrum verò omnium fibrarum prædictarum
<
lb
/>
idem eſt ac centrum I, quod eſt centrum eiuſdem ba
<
lb
/>
ſis; quaproptèr maximus conatus vniuerſæ reſiſten-</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>