Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Page concordance

< >
Scan Original
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000533">
                <pb pagenum="108" xlink:href="010/01/116.jpg"/>
                <arrow.to.target n="marg129"/>
                <lb/>
              dendo versùs I, eleuabiturque terminus oppoſitus
                <lb/>
              B versùs H, & conatus, ſeù vis, quo libra reuoluitur
                <lb/>
              æqualis erit non differentiæ, & exceſſui ponderis D
                <lb/>
              ſupra vim F, ſed æquabitur aggregato ambarum vir­
                <lb/>
                <figure id="id.010.01.116.1.jpg" xlink:href="010/01/116/1.jpg"/>
                <lb/>
              tutum D, & F. </s>
              <s id="s.000534">Applicetur termi­
                <lb/>
              no B pondus E æquale vi ſursùm
                <lb/>
              impellenti F, pariterque ibidem
                <lb/>
                <expan abbr="ſuſpẽdatur">ſuſpendatur</expan>
              aliud
                <expan abbr="põdus">pondus</expan>
              G æqua­
                <lb/>
              le oppoſito ponderi D, manife­
                <lb/>
              ſtum eſt (amotis, vel coercitis vi­
                <lb/>
              ribus F, & E) quòd
                <expan abbr="põdera">pondera</expan>
              æqua­
                <lb/>
              lia D, & G pendentia à terminis
                <lb/>
              radiorum æqualium eiuſdem li­
                <lb/>
              bræ efficient æquilibrium, & ideò
                <lb/>
                <arrow.to.target n="marg130"/>
                <lb/>
              libra quieſcet. </s>
              <s id="s.000535">Præterea quia pondus E æquatur vi
                <lb/>
              contrariæ ſursùm trahenti F, & ambæ applicantur
                <lb/>
              eidem termino B libræ AB (ab æqualibus ponderi­
                <lb/>
                <arrow.to.target n="marg131"/>
                <lb/>
              bus D, & G æquilibratæ) igitur duo pondera ſimùl
                <lb/>
              ſumpta G, & E libram impellunt contrario niſu, ſci­
                <lb/>
              licet à B verſus I, & præcisè adæquant conatum pon­
                <lb/>
              deris D, & vim trahentem F, quæ ambo deprimere
                <lb/>
              poſſunt terminum libræ A versùs I ſubleuando ter­
                <lb/>
              minum B versùs H. </s>
              <s id="s.000536">Ergo duæ vires D, & F ſimùl
                <expan abbr="sũp-tæ">sump­
                  <lb/>
                tæ</expan>
              (amotis ponderibus G, & E) determinant vim,
                <lb/>
              ſeù conatum, quo libra reuolui debet ab A, versùs I. </s>
            </p>
            <p type="margin">
              <s id="s.000537">
                <margin.target id="marg129"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="margin">
              <s id="s.000538">
                <margin.target id="marg130"/>
              Pr. 47.</s>
            </p>
            <p type="margin">
              <s id="s.000539">
                <margin.target id="marg131"/>
              Pr. 46.</s>
            </p>
            <p type="main">
              <s id="s.000540">Et hìc animaduertendum eſt, quòd duæ vires D,
                <lb/>
              & F, quæ reuerà contrariæ ſunt inter ſe (
                <expan abbr="">cum</expan>
              illa deor­
                <lb/>
              sùm comprimat, hæc verò ſursùm trahat) non ſibi
                <lb/>
              mutuò opponuntur, nec vna earum alteriùs motum̨ </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>