Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
Scan
Original
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.001204
">
<
pb
pagenum
="
234
"
xlink:href
="
010/01/242.jpg
"/>
<
arrow.to.target
n
="
marg312
"/>
<
lb
/>
pla potentia P, ſed a duplici
<
lb
/>
<
figure
id
="
id.010.01.242.1.jpg
"
xlink:href
="
010/01/242/1.jpg
"
number
="
94
"/>
<
lb
/>
potentia, tanquam à forcipe,
<
lb
/>
vel prælo, nempè à P, & ab
<
lb
/>
huic æquali reſiſtentia paui
<
lb
/>
menti RS. </
s
>
<
s
id
="
s.001205
">Igitur æquè com
<
lb
/>
primetur anulus, vel veſica
<
lb
/>
aerea ſolo innixa à ſingulari
<
lb
/>
potentia P, ac ſi à duabus contrarijs potentijs P, &
<
lb
/>
E, vel G conſtringeretur. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.001206
">
<
margin.target
id
="
marg312
"/>
Cap. 5. de ae
<
lb
/>
ris grauitate
<
lb
/>
æquilibrio,
<
lb
/>
ſtructura, &
<
lb
/>
vi elateria
<
lb
/>
eius.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001207
">
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
COROLLARIVM.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001208
">HInc patet, quòd ſi duæ potentiæ æquales ſimul
<
lb
/>
coniunctæ comprimant eumdem ſupremum̨
<
lb
/>
anuli terminum pauimento innixi, tunc momentum̨
<
lb
/>
fiue energia, qua anulus contunditur ſtringiturquę
<
lb
/>
duplex eſt eius, qua ab ijſdem potentijs oppoſitos
<
lb
/>
terminos ſtringentibus comprimitur. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001209
">Quia quotieſcum que duæ potentiæ inter ſe æqua
<
lb
/>
les P & G premunt ſupremum terminum B anuli BC,
<
lb
/>
tunc ſolum ſtabile RS in E, cui innititur idem præſtat,
<
lb
/>
& tanta energia operatur, ac ſi in E adeſſet potentią
<
lb
/>
æqualis ambabus contrarijs potentijs G & P: quare
<
lb
/>
vis, qua ſtringitur anulus æqualis eſt duplo potentia
<
lb
/>
rum G, & P. è contrà quando anulus ſtringitur ab ijſ
<
lb
/>
dem potentijs G, & P ſubdiuiſis, ſcilicèt à potentią
<
lb
/>
P in ſitu B, atque à potentia G in oppoſito eius ter
<
lb
/>
mino C vt in præcedenti figura videre eſt, tunc vis,
<
lb
/>
qua ſtringitur anulus, æqualis eſt præcisè duabus po
<
lb
/>
tentijs oppoſitis G, & P, igitur quando anulus ſolo </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>