Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
Scan
Original
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.002158
">
<
pb
pagenum
="
421
"
xlink:href
="
010/01/429.jpg
"/>
<
arrow.to.target
n
="
marg549
"/>
<
lb
/>
N, nifi quia prædicta fluida diuerſimodè reſiſtunt, &
<
lb
/>
alterant naturalem impetum, & motum eiuſdem mo
<
lb
/>
bilis. </
s
>
<
s
id
="
s.002159
">Supponamus igitur, quod gradus abſolutus ve
<
lb
/>
locitatis grauis A non retardatus, neque impeditus
<
lb
/>
à craſſitie alicuius medij fluidi ſit
<
expan
abbr
="
tãtæ
">tantæ</
expan
>
energiæ vt
<
expan
abbr
="
tẽ-pore
">ten
<
lb
/>
pore</
expan
>
T excurrere poſſit prolixiùs ſpatium CL; quare
<
lb
/>
retardatio profecta à craſſitie fluidi M impedientę
<
lb
/>
eius motum ſit DL, ſed à maiori craſſitie R alterius
<
lb
/>
fluidi N retardetur ſubtrahaturque ab integro, & na
<
lb
/>
turali eius fluxu ſpatium EL maius quam DL. modò
<
lb
/>
ſi retardatio DL facta à denſitate S fluidi M mi
<
lb
/>
nor fuerit ſpatio CE exacto in fluido N minori ve
<
lb
/>
locitate; dico, quod corporis A maior velocitas in
<
lb
/>
fluido M ad minorem velocitatem, quam exercet in
<
lb
/>
fluido N minorem proportionem habebit, quàm
<
expan
abbr
="
re-ſiſtẽtia
">re
<
lb
/>
ſiſtentia</
expan
>
, ſeù craſſities R ad reſiſtentiam S: ſi verò DL
<
lb
/>
æqualis fuerit CE proportionalia erunt; & tandem̨
<
lb
/>
ſi DL maior fuerit, quam CE, tunc velocitas, quam̨
<
lb
/>
exercet A in M ad velocitatem, quam exercet in N
<
lb
/>
<
expan
abbr
="
maiorẽ
">maiorem</
expan
>
<
expan
abbr
="
proportionẽ
">proportionem</
expan
>
habebit, quàm craſſities R ad S. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002160
">
<
margin.target
id
="
marg549
"/>
Cap. 10. de
<
lb
/>
æquitempo
<
lb
/>
ranea natu
<
lb
/>
rali veloci
<
lb
/>
tate
<
expan
abbr
="
grauiũ
">grauium</
expan
>
.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002161
">Ponamus primò DL minorem eſſe, quàm CE. quia
<
lb
/>
eadem ED ad maiorem CE habet
<
expan
abbr
="
minorẽ
">minorem</
expan
>
propor
<
lb
/>
tionem quàm ad minorem DL, igitur componendo
<
lb
/>
DC ad CE minorem proportionem habebit, quàm̨
<
lb
/>
EL ad LD, ſed vt DC ad CE, ita ſe habet velocitas
<
lb
/>
ipſius A in fluido M ad
<
expan
abbr
="
velocitatẽ
">velocitatem</
expan
>
eiuſdem in fluido
<
lb
/>
N, (propterea quòd velocitates eodem tempore T
<
lb
/>
exactè proportionales ſunt ſpatijs excurſis): & ſimi
<
lb
/>
litèr impedimentum, & retardatio, quam affert craſ-</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>