Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
Scan
Original
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000171
">
<
pb
pagenum
="
37
"
xlink:href
="
010/01/045.jpg
"/>
<
arrow.to.target
n
="
marg38
"/>
<
lb
/>
trea diſrumpitur, diſſilit, atque conteritur eo pręcisè
<
lb
/>
modo quo ab ictu mallei diſrumpitur; & ſi quidem
<
lb
/>
hoc verum non eſſet ſcilicèt ſi à pondere vtcumquę
<
lb
/>
multiplicato & aucto baſis vitrea non ſtringeretur &
<
lb
/>
comprimeretur, quælibet exiliſſima baſis vitrea to
<
lb
/>
leraret vim compreſſiuam ponderis cuiuſlibet
<
expan
abbr
="
mõtis
">montis</
expan
>
<
lb
/>
vaſti, quod procul dubio falſum eſt. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.000172
">
<
margin.target
id
="
marg35
"/>
Cap. 3. flui
<
lb
/>
dum in ſuo
<
lb
/>
toto quie
<
lb
/>
ſcens pon
<
lb
/>
derat.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.000173
">
<
margin.target
id
="
marg36
"/>
Cap. 3. flui
<
lb
/>
dum in ſuo
<
lb
/>
toto quie
<
lb
/>
ſcens pon
<
lb
/>
derat.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.000174
">
<
margin.target
id
="
marg37
"/>
Cap. 3. flui
<
lb
/>
dum in ſuo
<
lb
/>
toto quie
<
lb
/>
ſcens pon
<
lb
/>
derat.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.000175
">
<
margin.target
id
="
marg38
"/>
Cap. 3. flui
<
lb
/>
dum in ſuo
<
lb
/>
toto quie
<
lb
/>
ſcens pon
<
lb
/>
derat.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000176
">Hoc poſito nemo negabit quòd ſi pondus duplice
<
lb
/>
tur vt ſcilicèt vnum ſuper alterum ſuperponatur,
<
expan
abbr
="
tũc
">tunc</
expan
>
<
lb
/>
duplici vi, ac robore infima baſis vitrea comprime
<
lb
/>
tur ac conſtipabitur, & proindè poroſitates multò
<
lb
/>
magis imminuentur à duplici impulſu, quando
<
expan
abbr
="
quidẽ
">quidem</
expan
>
<
lb
/>
concipi non poteſt moles grauis aucta & multiplica
<
lb
/>
ta abſque eo quòd pondus, & proindè vis, & energia
<
lb
/>
compreſſiua versùs centrum telluris multiplicetur,
<
lb
/>
vnde fit vt partes ſolidæ & conſiſtentes
<
expan
abbr
="
comprimãtur
">comprimantur</
expan
>
<
lb
/>
&
<
expan
abbr
="
conſtipẽtur
">conſtipentur</
expan
>
multo magis. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000177
">At ſi hoc contingit in corporibus duriſſimis, nega
<
lb
/>
ri certè non poterit in corporibus fluidis, quæ noņ
<
lb
/>
minùs grauia ſunt &
<
expan
abbr
="
cõ
">comprimunt</
expan
>
fundum vaſis in quo
<
lb
/>
continentur tanta vi, quanta eſt energia ponderis
<
lb
/>
eorum, ita ut multiplicata fluidi mole centies, & mil
<
lb
/>
lies vaſis fundum centies, & millies maiori vi com
<
lb
/>
primatur, & licèt ibidem non adſit motus progreſ
<
lb
/>
ſiuus, numquam tamen deficiet motus tonicus, & reſ
<
lb
/>
trictio pororum fundi vaſis, & compreſſio pororum
<
lb
/>
eiuſdem fluidi, ſi fortè poroſitates habuerit, & ſicuti
<
lb
/>
fluidum grauitat atque conſtringit poroſitates fundi
<
lb
/>
vaſis, hac de cauſa, quia ponderat, & grauitat, nulla </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>