Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Page concordance

< >
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.002589">
                <pb pagenum="491" xlink:href="010/01/499.jpg"/>
                <arrow.to.target n="marg679"/>
                <lb/>
              differentiam; & quia proportio FC ad KH compo­
                <lb/>
              nitur ex proportione D minus E ad D plus E, & ex
                <lb/>
              ratione G plus M ad G minus M, ſeu ex ratione D
                <lb/>
              plus E ad R, ergo FC ad KH eamdem rationem ha­
                <lb/>
              bet quam D minus E ad R, & reperta S media pro­
                <lb/>
              portionali inter D minus E, & R erit FC ad CI, vt D
                <lb/>
              minus E ad S, quare factum eſt, quod propoſitum̨
                <lb/>
              fuerat. </s>
            </p>
            <p type="margin">
              <s id="s.002590">
                <margin.target id="marg677"/>
              Bib. noſtro
                <lb/>
              De vi per­
                <lb/>
                <gap/>
              cuſſionis pr.
                <lb/>
              92.</s>
            </p>
            <p type="margin">
              <s id="s.002591">
                <margin.target id="marg678"/>
                <gap/>
              239.</s>
            </p>
            <p type="margin">
              <s id="s.002592">
                <margin.target id="marg679"/>
              Cap. 11. gra­
                <lb/>
              uia in fluido
                <lb/>
              velocitati­
                <lb/>
              bus inæqua­
                <lb/>
              libus ferri
                <lb/>
              debere.</s>
            </p>
            <p type="main">
              <s id="s.002593">
                <emph type="center"/>
              PROP. CCXLI.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.002594">
                <emph type="center"/>
                <emph type="italics"/>
              Datis duobus ſolidis æqualibus, eiuſdemque figuræ, ſed inæ­
                <lb/>
              qualium grauitatum, præcognitarum, & dato quoque
                <lb/>
              pondere molis fluidi leuioris æqualis ſolidis demerſis: re­
                <lb/>
              perire proportionem velocitatum quibus deſcendunt in
                <lb/>
              eodem fluido.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.002595">SInt duæ moles ſolidæ æquales eiuſdemque figu­
                <lb/>
              ræ AC, & GI, ſed inæqualiter graues, v. g. AC
                <lb/>
              ſit aurum, GI verò ſtannum, & facilitatis gratia in­
                <lb/>
              telligantur eſſe parallelepipeda æquè alta, & æqua­
                <lb/>
              lium baſium, & ambo in aqua EHLX demerſa
                <expan abbr="com-parẽtur">com­
                  <lb/>
                parentur</expan>
              cum æqualibus, ſimilibuſque parallelepipe­
                <lb/>
              dis aqueis collateralibus DF, & KM cum quibus ſi­
                <lb/>
              phones conſtituere intelligantur, tunc recta NO
                <expan abbr="cõ-iungens">con­
                  <lb/>
                iungens</expan>
              centra grauitatum auri AC, & aquæ DF li­
                <lb/>
              bram conſtituet, quæ bifariam ſecta erit in centro,
                <lb/>
              ſeu fulcimento P, propter æqualitatem, & ſimilitudi­
                <lb/>
              nem prædictorum corporum AC, DF ab eiſdem pla­
                <lb/>
                <arrow.to.target n="marg680"/>
                <lb/>
              nis horizontalibus comprehenſorum, eiuſdemquę
                <lb/>
              libræ centrum grauitatis ſit T, vnde patet, quod PT
                <lb/>
              eſt longitudo penduli à quo oritur impetus deſcen-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>