Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Page concordance

< >
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.002580">
                <pb pagenum="489" xlink:href="010/01/497.jpg"/>
                <arrow.to.target n="marg675"/>
              </s>
            </p>
            <p type="margin">
              <s id="s.002581">
                <margin.target id="marg675"/>
              Cap. 11. gra­
                <lb/>
              uia in fluido
                <lb/>
              velocitati­
                <lb/>
              bus inæqua­
                <lb/>
              libus ferri
                <lb/>
              debere.</s>
            </p>
            <p type="main">
              <s id="s.002582">
                <emph type="center"/>
              PROP. CCXXXIX.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.002583">
                <emph type="center"/>
                <emph type="italics"/>
              Si à terminis duarum librarum æqualium, & æqualium
                <lb/>
              radiorum duo pondera æqualia pendeant, ſed oppoſitis
                <lb/>
              minora, pendulum prioris libræ ad pendulum poſterioris
                <lb/>
              proportionem compoſitam habebit ex ratione differentiæ
                <lb/>
              priorum ponderum ad eorum ſummam, & ex ratione
                <lb/>
              ſummæ posteriorum ad differentiam eorumdem
                <expan abbr="ponderũ">ponderum</expan>
              .
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.002584">SInt duæ libræ æquales AB, & NO bifariàm ſectæ
                <lb/>
              in fulci mentis C, & K, atque ex A pendeat ma­
                <lb/>
              ius pondus D, ex N verò minus pondus G, atque iņ
                <lb/>
                <figure id="id.010.01.497.1.jpg" xlink:href="010/01/497/1.jpg" number="174"/>
                <lb/>
              B, & O ſuſpendantur duo
                <expan abbr="põ-dera">pon­
                  <lb/>
                dera</expan>
              æqualia E, & M,
                <expan abbr="quorũ">quorum</expan>
                <lb/>
              ſingula minora ſint quàm D,
                <lb/>
              vel G;
                <expan abbr="reperiãturque">reperianturque</expan>
              duo ea­
                <lb/>
              rum centra grauitatum F, &
                <lb/>
              H; dico pendulum CF ad K
                <lb/>
              H proportionem
                <expan abbr="compoſitã">compoſitam</expan>
                <lb/>
              habere ex ratione ponderis D minus E ad D plus E,
                <lb/>
              & ex ratione G plus M ad G minus M;
                <expan abbr="quoniã">quoniam</expan>
              AC ad
                <lb/>
              CF eſt vt D plus E ad D minus E (ex præcedenti) er­
                <lb/>
              go inuertendo FC ad CA, ſeu ad ei æqualem KN
                <expan abbr="eã-dem">ean­
                  <lb/>
                dem</expan>
              proportionem habet
                <expan abbr="quã">quam</expan>
              D minus E ad D plus
                <lb/>
              E, & NK ad KH eamdem proportionem habet,
                <expan abbr="quã">quam</expan>
                <lb/>
              G plus M ad G minus M; habet verò FC ad HK pro­
                <lb/>
              portionem compoſitam ex ratione FC ad CA, ſeu ad
                <lb/>
              NK, & ex ratione KN ad KH, ergo FC ad KH com­
                <lb/>
              poſitam proportionem habebit ex ijſdem proportio­
                <lb/>
              nibus D minus E ad D plus E, & ex G plus M ad G
                <lb/>
              minus M. </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>