Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
Scan
Original
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 450
451 - 480
481 - 510
511 - 540
541 - 570
571 - 579
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.002606
">
<
pb
pagenum
="
494
"
xlink:href
="
010/01/502.jpg
"/>
<
arrow.to.target
n
="
marg687
"/>
<
lb
/>
inæqualibus ponderibus DF, & KM, erit ſumma eiuſ
<
lb
/>
dem ponderis AC, & grauioris fluidi DF maior
<
expan
abbr
="
quã
">quam</
expan
>
<
lb
/>
ſumma ponderis AC, & leuioris KM, at differentią,
<
lb
/>
ſeu exceſſus ponderis AC ſupra DF minor erit diffe
<
lb
/>
rentia ponderum AC, & KM, ergo maior ſumma
<
expan
abbr
="
põ-derum
">pon
<
lb
/>
derum</
expan
>
AC, & DF ad minorem ſummam ponderum̨
<
lb
/>
AC, & KM maiorem proportionem habebit, quam̨
<
lb
/>
minor differentia ponderum AC, DF ad
<
expan
abbr
="
differentiã
">differentiam</
expan
>
<
lb
/>
maiorem ponderum AC, & KM; & permutando ſum
<
lb
/>
ma ponderum AC, & DF ad eorum differentiam, ſeu
<
lb
/>
<
arrow.to.target
n
="
marg688
"/>
<
lb
/>
libræ radius PN ad penduli longitudinem PT maio
<
lb
/>
rem proportionem habet, quam ſumma ponderum̨
<
lb
/>
AC, & KM ad eorum differentiam, ſeu quam libræ
<
lb
/>
radius SQ ad pendulum SV, ſuntque librarum æqua
<
lb
/>
lium radij PN, SQ æquales inter ſe, igitur
<
expan
abbr
="
pendulũ
">pendulum</
expan
>
<
lb
/>
SV maioris longitudinis eſt, quàm PT, & ideò cele
<
lb
/>
rius deſcendet AC in rariori fluido KM quam in gra
<
lb
/>
<
arrow.to.target
n
="
marg689
"/>
<
lb
/>
uiori DF. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002607
">
<
margin.target
id
="
marg685
"/>
Pr. 241.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002608
">
<
margin.target
id
="
marg686
"/>
Pr. 238.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002609
">
<
margin.target
id
="
marg687
"/>
Cap. 11. gra
<
lb
/>
uia in fluido
<
lb
/>
velocitati
<
lb
/>
bus inæqua
<
lb
/>
libus ferri
<
lb
/>
debere.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002610
">
<
margin.target
id
="
marg688
"/>
Pr. 238.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002611
">
<
margin.target
id
="
marg689
"/>
De vi per
<
lb
/>
cuſſionis
<
lb
/>
Pr. 92.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002612
">Et hìc pariter poteſt reperiri proportio velocita
<
lb
/>
tum
<
expan
abbr
="
eiuſdẽ
">eiuſdem</
expan
>
ſolidi in duobus fluidis inæqualiter gra
<
lb
/>
uibus. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002613
">
<
emph
type
="
center
"/>
PROP. CCXLIII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002614
">
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Duo ſolida æqualia, & inæqualiter grauia ſi ſpecie grauiora
<
lb
/>
fluidis fuerint, maiori inæqualitate in medio fluido denſio
<
lb
/>
ri, quàm in rariori, & minùs graui fluido deſcendunt.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002615
">QVod breuitatis gratia ex ipſo calculo collige
<
lb
/>
mus. </
s
>
<
s
id
="
s.002616
">Ex tabulis Doctiſſimi Marini Ghetaldi,
<
lb
/>
atque accuratiſſimi. </
s
>
<
s
id
="
s.002617
">P. </
s
>
<
s
id
="
s.002618
">Petiti habentur proportiones
<
lb
/>
grauitatum ſpecificarum plurium metallorum reſpe-</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>