Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Page concordance

< >
Scan Original
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000082">
                <pb pagenum="15" xlink:href="010/01/023.jpg"/>
                <arrow.to.target n="marg15"/>
                <lb/>
              Y in ſecundo & ſubleuata vſque ad V; tunc quidem̨
                <lb/>
              centrum grauitatis prædictæ aquæ horizontaliter
                <expan abbr="cõ-ſtitutæ">con­
                  <lb/>
                ſtitutæ</expan>
              præcisè incidet in
                <expan abbr="cẽtro">centro</expan>
              ſuſpenſionis M, prop­
                <lb/>
              terea quòd vt baſis V ad baſim A ſeù vt cylindrus a­
                <lb/>
              queus GLV ad equè altum cy­
                <lb/>
                <figure id="id.010.01.023.1.jpg" xlink:href="010/01/023/1.jpg"/>
                <lb/>
              lindrum AEF in primo caſu vel
                <lb/>
              ad CEF in ſecundo, ita fuit reci­
                <lb/>
              procè diſtantia EM ad ML. o­
                <lb/>
              ſtendendum modò eſt punctą
                <lb/>
              A, Q, R, S, M in eadèm linea pa­
                <lb/>
              rabolica eſſe. </s>
              <s id="s.000083">quia moles aquæ
                <lb/>
              TX æqualis eſt æquæ moli GH
                <lb/>
              I, ergo, XBF vnà cum GHI æ­
                <lb/>
              qualis eſt moli aqueæ TAF; e­
                <lb/>
              rat verò moles aquæ XBF vnà
                <lb/>
              cum GHI ad GHI vt linea HB
                <lb/>
              ad BQ ſeu (ducta QN parallel­
                <lb/>
              là AE) vt LE ad EN, ergo FAT
                <lb/>
              ad TX atque ſemiſſis illius FA
                <lb/>
              ad huius ſemiſſem AB eamdem
                <lb/>
              proportionem habebit quam̨
                <lb/>
              LE ad EN, eſt verò EA ad AF vt MA ad AG, ſeù vt
                <lb/>
              ME ad EL, ergo ex æqualitate ordinata EA ad AB
                <lb/>
              eamdem proportionem habebit quam ME ad EN, &
                <lb/>
              per conuerſionem rationis EA ad EB erit vt EM ad
                <lb/>
              MN, ſeù vt EB ad NQ, erunt igitur tres continuæ pro
                <lb/>
              portionales EA, EB, & NQ in eadem ratione quam̨
                <lb/>
              habet EM ad MN, quare quadratum ex EM ad qua­
                <lb/>
              dratum ex MN eam proportionem habebit, quam̨ </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>