Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Page concordance

< >
Scan Original
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000533">
                <pb pagenum="108" xlink:href="010/01/116.jpg"/>
                <arrow.to.target n="marg129"/>
                <lb/>
              dendo versùs I, eleuabiturque terminus oppoſitus
                <lb/>
              B versùs H, & conatus, ſeù vis, quo libra reuoluitur
                <lb/>
              æqualis erit non differentiæ, & exceſſui ponderis D
                <lb/>
              ſupra vim F, ſed æquabitur aggregato ambarum vir­
                <lb/>
                <figure id="id.010.01.116.1.jpg" xlink:href="010/01/116/1.jpg"/>
                <lb/>
              tutum D, & F. </s>
              <s id="s.000534">Applicetur termi­
                <lb/>
              no B pondus E æquale vi ſursùm
                <lb/>
              impellenti F, pariterque ibidem
                <lb/>
                <expan abbr="ſuſpẽdatur">ſuſpendatur</expan>
              aliud
                <expan abbr="põdus">pondus</expan>
              G æqua­
                <lb/>
              le oppoſito ponderi D, manife­
                <lb/>
              ſtum eſt (amotis, vel coercitis vi­
                <lb/>
              ribus F, & E) quòd
                <expan abbr="põdera">pondera</expan>
              æqua­
                <lb/>
              lia D, & G pendentia à terminis
                <lb/>
              radiorum æqualium eiuſdem li­
                <lb/>
              bræ efficient æquilibrium, & ideò
                <lb/>
                <arrow.to.target n="marg130"/>
                <lb/>
              libra quieſcet. </s>
              <s id="s.000535">Præterea quia pondus E æquatur vi
                <lb/>
              contrariæ ſursùm trahenti F, & ambæ applicantur
                <lb/>
              eidem termino B libræ AB (ab æqualibus ponderi­
                <lb/>
                <arrow.to.target n="marg131"/>
                <lb/>
              bus D, & G æquilibratæ) igitur duo pondera ſimùl
                <lb/>
              ſumpta G, & E libram impellunt contrario niſu, ſci­
                <lb/>
              licet à B verſus I, & præcisè adæquant conatum pon­
                <lb/>
              deris D, & vim trahentem F, quæ ambo deprimere
                <lb/>
              poſſunt terminum libræ A versùs I ſubleuando ter­
                <lb/>
              minum B versùs H. </s>
              <s id="s.000536">Ergo duæ vires D, & F ſimùl
                <expan abbr="sũp-tæ">sump­
                  <lb/>
                tæ</expan>
              (amotis ponderibus G, & E) determinant vim,
                <lb/>
              ſeù conatum, quo libra reuolui debet ab A, versùs I. </s>
            </p>
            <p type="margin">
              <s id="s.000537">
                <margin.target id="marg129"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="margin">
              <s id="s.000538">
                <margin.target id="marg130"/>
              Pr. 47.</s>
            </p>
            <p type="margin">
              <s id="s.000539">
                <margin.target id="marg131"/>
              Pr. 46.</s>
            </p>
            <p type="main">
              <s id="s.000540">Et hìc animaduertendum eſt, quòd duæ vires D,
                <lb/>
              & F, quæ reuerà contrariæ ſunt inter ſe (
                <expan abbr="">cum</expan>
              illa deor­
                <lb/>
              sùm comprimat, hæc verò ſursùm trahat) non ſibi
                <lb/>
              mutuò opponuntur, nec vna earum alteriùs motum̨ </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>