Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Page concordance

< >
Scan Original
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000949">
                <pb pagenum="186" xlink:href="010/01/194.jpg"/>
                <arrow.to.target n="marg239"/>
                <lb/>
              tiæ ad diuulſionem exercetur in centro I circuli AB.
                <lb/>
              </s>
              <s id="s.000950">Habebimus igitur vectem inflexum CBI in quo vis
                <lb/>
                <expan abbr="mouẽs">mouens</expan>
              M applicatur in C, reſiſtentia verò applicatur
                <lb/>
              in I, & fulcimentum, ſeù centrum reuolutionis vectis
                <lb/>
              CBI eſt punctum B quod fixum perſeuerat dum cir­
                <lb/>
              ca ipſum motus, & reuolutiones partium vectis
                <expan abbr="fiũt">fiunt</expan>
              ;
                <lb/>
              Quaproptèr, iuxtà leges Mechanices, reſiſtentia to­
                <lb/>
              talis ad diuulſionem, & ſeparationem ſuperficiei AB
                <lb/>
              ab ipſo pauimento ad vim
                <expan abbr="mouẽtem">mouentem</expan>
              M eamdem pro­
                <lb/>
              portionem habebit, quam vectis longitudo CB ad
                <lb/>
              oppoſitam eius portionem BI, ſcilicèt habebit eam­
                <lb/>
              dem proportionem. </s>
              <s id="s.000951">quam pondus S habet ad pondus
                <lb/>
              R. </s>
              <s id="s.000952">Verùm pondus R æquale erat potentiæ M. igitur
                <lb/>
              pondus S æquale erit reſiſtentię abſolutæ, & totali,
                <lb/>
              quam exercet ſuperficies AB quando diuelli, & ſe­
                <lb/>
              parari debet à ſuperficie paui
                <expan abbr="mẽti">menti</expan>
              tractione directa.
                <lb/>
              </s>
              <s id="s.000953">Hinc deducitur quòd ſi
                <expan abbr="põ-">pon­
                  <lb/>
                </expan>
                <figure id="id.010.01.194.1.jpg" xlink:href="010/01/194/1.jpg"/>
                <lb/>
              dus O propoſitionis 89. di­
                <lb/>
              uellit columnam à pauimento
                <lb/>
              directione, & impetu tranſ­
                <lb/>
              uerſali, & perpendiculari ad
                <lb/>
              latus columnę, poterit nihilo­
                <lb/>
              minùs indagari
                <expan abbr="reſiſtẽtia">reſiſtentia</expan>
              ab­
                <lb/>
              ſoluta, & totalis contiguita­
                <lb/>
              tis, vel repugnantiæ ad vacuum earumdem ſuperfi­
                <lb/>
              cierum, eritque talis vis abſoluta tantomaior pon­
                <lb/>
              dere O, quantò altitudo columnæ CB maior eſt ſe­
                <lb/>
              miſſe diametri AB, & ſic ſi vis transuerſalitèr colum­
                <lb/>
              nam diuellens æqualis eſſet ponderi trium librarum </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>