Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Page concordance

< >
Scan Original
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.001204">
                <pb pagenum="234" xlink:href="010/01/242.jpg"/>
                <arrow.to.target n="marg312"/>
                <lb/>
              pla potentia P, ſed a duplici
                <lb/>
                <figure id="id.010.01.242.1.jpg" xlink:href="010/01/242/1.jpg"/>
                <lb/>
              potentia, tanquam à forcipe,
                <lb/>
              vel prælo, nempè à P, & ab
                <lb/>
              huic æquali reſiſtentia paui­
                <lb/>
              menti RS. </s>
              <s id="s.001205">Igitur æquè com­
                <lb/>
              primetur anulus, vel veſica
                <lb/>
              aerea ſolo innixa à ſingulari
                <lb/>
              potentia P, ac ſi à duabus contrarijs potentijs P, &
                <lb/>
              E, vel G conſtringeretur. </s>
            </p>
            <p type="margin">
              <s id="s.001206">
                <margin.target id="marg312"/>
              Cap. 5. de ae
                <lb/>
              ris grauitate
                <lb/>
              æquilibrio,
                <lb/>
              ſtructura, &
                <lb/>
              vi elateria
                <lb/>
              eius.</s>
            </p>
            <p type="main">
              <s id="s.001207">
                <emph type="center"/>
                <emph type="italics"/>
              COROLLARIVM.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.001208">HInc patet, quòd ſi duæ potentiæ æquales ſimul
                <lb/>
              coniunctæ comprimant eumdem ſupremum̨
                <lb/>
              anuli terminum pauimento innixi, tunc momentum̨
                <lb/>
              fiue energia, qua anulus contunditur ſtringiturquę
                <lb/>
              duplex eſt eius, qua ab ijſdem potentijs oppoſitos
                <lb/>
              terminos ſtringentibus comprimitur. </s>
            </p>
            <p type="main">
              <s id="s.001209">Quia quotieſcum que duæ potentiæ inter ſe æqua­
                <lb/>
              les P & G premunt ſupremum terminum B anuli BC,
                <lb/>
              tunc ſolum ſtabile RS in E, cui innititur idem præſtat,
                <lb/>
              & tanta energia operatur, ac ſi in E adeſſet potentią
                <lb/>
              æqualis ambabus contrarijs potentijs G & P: quare
                <lb/>
              vis, qua ſtringitur anulus æqualis eſt duplo potentia­
                <lb/>
              rum G, & P. è contrà quando anulus ſtringitur ab ijſ­
                <lb/>
              dem potentijs G, & P ſubdiuiſis, ſcilicèt à potentią
                <lb/>
              P in ſitu B, atque à potentia G in oppoſito eius ter­
                <lb/>
              mino C vt in præcedenti figura videre eſt, tunc vis,
                <lb/>
              qua ſtringitur anulus, æqualis eſt præcisè duabus po­
                <lb/>
              tentijs oppoſitis G, & P, igitur quando anulus ſolo </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>