Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
101
43
102
103
104
105
106
107
108
109
110
111
112
113
1
114
115
2
116
117
3
118
119
4
120
121
5
122
123
6
124
125
7
126
127
8
128
129
9
130
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(8)
of 213
>
>|
DE CENTRO GRAVIT. SOLID.
æquidiſtant
autem
c
g
o
,
m
n
p
.
ergo
parallelogrãma
ſunt
o
n
,
g
m
, &
linea
m
n
æqualis
c
g
;
&
n
p
ipſi
g
o
.
aptatis
igi-
tur
K
l
m
,
a
b
c
triãgulis
,
quæ
æqualia
&
ſimilia
sũt
;
linea
m
p
in
c
o
, &
punctum
n
in
g
cadet
.
Quòd
cũ
g
ſit
centrum
gra-
uitatis
trianguli
a
b
c
, &
n
trianguli
K
l
m
grauitatis
cen-
trum
erit
id
,
quod
demonſtrandum
relinquebatur
.
Simili
ratione
idem
contingere
demonſtrabimus
in
aliis
priſma-
tibus
,
ſiue
quadrilatera
,
ſiue
plurilatera
habeant
plana
,
quæ
opponuntur
.
COROLLARIVM
.
Exiam
demonſtratis
perſpicue
apparet
,
cuius
Iibet
priſmatis
axem
,
parallelogrammorum
lat
eri
bus,
quæ
ab
oppoſitis
planis
ducũtur
æquidiſtare.
THEOREMA
VI
.
PROPOSITIO
VI
.
Cuiuslibet
priſmatis
centrum
grauitatis
eſt
in
plano
,
quod
oppoſitis
planis
æquidiſtans
,
reli-
quorum
planorum
latera
bifariam
diuidit
.
Sit
priſma
,
in
quo
plana
,
quæ
opponuntur
ſint
trian-
gula
a
c
e
,
b
d
f
:
&
parallelogrammorum
latera
a
b
,
c
d
,
e
f
bifariam
diuidãtur
in
punctis
g
h
_K_:
per
diuiſiones
au-
tem
planum
ducatur
;
cuius
ſectio
figura
g
h
_K_.
eritlinea
33. primi
g
h
æquidiſtans
lineis
a
c
,
b
d
&
h
k
ipſis
c
e
,
d
f
.
quare
ex
decimaquinta
undecimi
elementorum
,
planum
illud
pla
nis
a
c
e
,
b
d
f
æquidiſtabit, &
ſaciet
ſectionem
figu-
5. huius
ram
ipſis
æqualem
, &
ſimilem
,
ut
proxime
demonſtra-
uimus
.
Dico
centrum
grauitatis
priſmatis
eſſe
in
plano
g
h
K
.
Si
enim
fieri
poteſt
,
ſit
eius
centrum
l
:
&
ducatur
l
m
uſque
ad
planum
g
h
K
,
quæ
ipſi
a
b
æquidiſtet.
Text layer
Dictionary
Text normalization
Original
Search
Exact
All forms
Fulltext index
Morphological index