Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
111
112
113 1
114
115 2
116
117 3
118
119 4
120
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
< >
page |< < of 213 > >|
72ARCHIMEDIS quindecim ad quatuor; & ad eam, quæ uſque ad axem maiorem pro
portionem habeat:
erit quæ uſ que ad axem minor ipſa k c.
1110. quinti
Sit ei, quæ uſque ad axem æ qualis k r. ] _Hac nos addidimus,_
22G _quæ in translatione non erant._
_Eſt autem & s b ſeſquialtera ipſius b r. ]_ Ponitur enim
33H d b ſeſquialtera ipſius b k;
itémq; d ſ ſeſquialtera k r. quare ut to
ta d b ad totam b K, ita pars d s ad partem K r.
ergo & reliqua
4419. quinti s b ad reliquim b r, ut d b ad b k.
_Quæ ſimiles ſint portioni a b l. ]_ Similes portiones coni ſe-
55K ctionum Apollonius it.
i diffiniuit in ſexto libro conicorum, ut ſcri-
bit Eutocius, εν οἱς α χ θεισωνἐν ἑηάστω παραλλήλων τῆ βάσει, ἵσωι
τὸ πλῆθος, ὰι παρὰλληλοι, καὶ αἱ βάσ{ει}ς πρὸς τὰςἀποτεμνομένας
ἀπὸ τῶν διαμέ τρων ταῖς νορυφαῖς ἐν τοῖς αὐτοῖ ς λὄγοιςεἰσἰ, καὶἁι
ἀποτεμνόμεναι πρὸς τάς ἀποτεμνομένας;
hoc est. in quibus ſi du-
cantnr lineæ æquidistantes baſi numero æquales:
æquidiſtantes atq;
baſes ad partes diametrorum, quæ ab ipſis ad uerticem abſcindũtur,
eandem proportionem babent:
it émq; partes abſciſſæ ad abſciſſas.
ducuntur autem lineæ baſi æquidistantes:
ut opinor, deſcripta in ſin
gulis plane rectilinea figura, quæ lateribus numero æqualibus conti
66γνωρίμως neatur.
Itaq; portiones ſimiles à ſimilibus coni ſectionibus abſcindũ
tur:
& earum diametri ſiue ad baſes rectæ, ſiue cum baſibus æ qua-
les angulos facientes, ad ipſas baſes eandem habent proportionem.
_Tranſibit igitur a e i coni ſectio per k. ]_ Sienim fieri po
77L teſt non tranſeat per k, ſed per aliud punctum lineæ d b, ut per u.
Quoniam igitur in rectáguli coni ſectione a e i, cuius diameter e z,
ducta eſt a e, &
producta: & d b diametro æquidistans utraſque
a e, a i ſecat;
a e quidem in b, ai uero in d: habebit d b ad b u
proportionem eandem, quam a z, ad z d, ex quarta propoſitione li
bri.
Archimedis de quadratura parabolæ. Sed a z ſeſquialtera eſt
ipſius z d:
eſt enim ut tria ad duo, quod mox demonſtrabimus. ergo
d b ſeſquialtera eſt ipſius b u.
eſt auté d b & ipſius b k ſeſquialte
ra.
quare lineæ b u, b k inter ſe æ quales ſunt; quod fieri non po-
882. quinti. teſt.
restanguli igitur com ſectio a e i per punctum k tranſibit.
quod demonstrare uolebamus.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index