Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
111
112
113
1
114
115
2
116
117
3
118
119
4
120
121
5
122
123
6
124
125
7
126
127
8
128
129
9
130
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div214
"
type
="
section
"
level
="
1
"
n
="
72
">
<
pb
file
="
0130
"
n
="
130
"
rhead
="
FED. COMMANDINI
"/>
<
p
>
<
s
xml:id
="
echoid-s3310
"
xml:space
="
preserve
">SIT cylindrus, uel cylindri po rtio a c: </
s
>
<
s
xml:id
="
echoid-s3311
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3312
"
xml:space
="
preserve
">plano per a-
<
lb
/>
xem ducto ſecetur; </
s
>
<
s
xml:id
="
echoid-s3313
"
xml:space
="
preserve
">cuius ſectio ſit parallelogrammum a b
<
lb
/>
c d: </
s
>
<
s
xml:id
="
echoid-s3314
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3315
"
xml:space
="
preserve
">bifariam diuiſis a d, b c parallelogrammi lateribus,
<
lb
/>
per diuiſionum puncta e f planum baſi æquidiſtans duca-
<
lb
/>
tur; </
s
>
<
s
xml:id
="
echoid-s3316
"
xml:space
="
preserve
">quod faciet ſectionem, in cy lindro quidem circulum
<
lb
/>
æqualem iis, qui ſunt in baſibus, ut demonſtrauit Serenus
<
lb
/>
in libro cylindricorum, propoſitione quinta: </
s
>
<
s
xml:id
="
echoid-s3317
"
xml:space
="
preserve
">in cylindri
<
lb
/>
uero portione ellipſim æqualem, & </
s
>
<
s
xml:id
="
echoid-s3318
"
xml:space
="
preserve
">ſimilem eis, quæ ſunt
<
lb
/>
in oppoſitis planis, quod nos
<
lb
/>
<
figure
xlink:label
="
fig-0130-01
"
xlink:href
="
fig-0130-01a
"
number
="
86
">
<
image
file
="
0130-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0130-01
"/>
</
figure
>
demonſtrauimus in commen
<
lb
/>
tariis in librum Archimedis
<
lb
/>
de conoidibus, & </
s
>
<
s
xml:id
="
echoid-s3319
"
xml:space
="
preserve
">ſphæroidi-
<
lb
/>
bus. </
s
>
<
s
xml:id
="
echoid-s3320
"
xml:space
="
preserve
">Dico centrum grauita-
<
lb
/>
tis cylindri, uel cylindri por-
<
lb
/>
tionis eſſe in plano e f. </
s
>
<
s
xml:id
="
echoid-s3321
"
xml:space
="
preserve
">Si enĩ
<
lb
/>
fieri poteſt, fit centrum g: </
s
>
<
s
xml:id
="
echoid-s3322
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3323
"
xml:space
="
preserve
">
<
lb
/>
ducatur g h ipſi a d æquidi-
<
lb
/>
ſtans, uſque ad e f planum.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3324
"
xml:space
="
preserve
">Itaque linea a e continenter
<
lb
/>
diuiſa bifariam, erit tandem
<
lb
/>
pars aliqua ipſius k e, minor
<
lb
/>
g h. </
s
>
<
s
xml:id
="
echoid-s3325
"
xml:space
="
preserve
">Diuidantur ergo lineæ
<
lb
/>
a e, e d in partes æquales ipſi
<
lb
/>
k e: </
s
>
<
s
xml:id
="
echoid-s3326
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3327
"
xml:space
="
preserve
">per diuiſiones plana ba
<
lb
/>
ſibus æquidiſtantia ducãtur. </
s
>
<
s
xml:id
="
echoid-s3328
"
xml:space
="
preserve
">
<
lb
/>
erunt iam ſectiones, figuræ æ-
<
lb
/>
quales, & </
s
>
<
s
xml:id
="
echoid-s3329
"
xml:space
="
preserve
">ſimiles eis, quæ ſunt
<
lb
/>
in baſibus: </
s
>
<
s
xml:id
="
echoid-s3330
"
xml:space
="
preserve
">atque erit cylindrus in cylindros diuiſus: </
s
>
<
s
xml:id
="
echoid-s3331
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3332
"
xml:space
="
preserve
">cy
<
lb
/>
lindri portio in portiones æquales, & </
s
>
<
s
xml:id
="
echoid-s3333
"
xml:space
="
preserve
">ſimiles ipſi k f. </
s
>
<
s
xml:id
="
echoid-s3334
"
xml:space
="
preserve
">reli-
<
lb
/>
qua ſimiliter, ut ſuperius in priſmate concludentur.</
s
>
<
s
xml:id
="
echoid-s3335
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>