Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
121
5
122
123
6
124
125
7
126
127
8
128
129
9
130
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(2)
of 213
>
>|
DE CENTRO GRAVIT. SOLID.
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
64
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
o
="
2
"
file
="
0115
"
n
="
115
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
tur, centrum grauitatis eſt idem, quod circuli cen
<
lb
/>
trum.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:space
="
preserve
">Sit primo triangulum æquilaterum a b c in circulo de-
<
lb
/>
ſcriptum: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">diuiſa a c bifariam in d, ducatur b d. </
s
>
<
s
xml:space
="
preserve
">erit in li-
<
lb
/>
nea b d centrum grauitatis triãguli a b c, ex tertia decima
<
lb
/>
primi libri Archimedis de centro grauitatis planorum. </
s
>
<
s
xml:space
="
preserve
">Et
<
lb
/>
quoniam linea a b eſt æqualis
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0115-01a
"
xlink:href
="
fig-0115-01
"/>
lineæ b c; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">a d ipſi d c; </
s
>
<
s
xml:space
="
preserve
">eſtq́;
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">b d utrique communis: </
s
>
<
s
xml:space
="
preserve
">trian-
<
lb
/>
gulum a b d æquale erit trian
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0115-01a
"
xlink:href
="
note-0115-01
"/>
gulo c b d: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">anguli angulis æ-
<
lb
/>
quales, qui æqualibus lateri-
<
lb
/>
bus ſubtenduntur. </
s
>
<
s
xml:space
="
preserve
">ergo angu
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0115-02a
"
xlink:href
="
note-0115-02
"/>
li ad d utriq; </
s
>
<
s
xml:space
="
preserve
">recti ſunt. </
s
>
<
s
xml:space
="
preserve
">quòd
<
lb
/>
cum linea b d ſecet a c biſa-
<
lb
/>
riam, & </
s
>
<
s
xml:space
="
preserve
">ad angulos rectos; </
s
>
<
s
xml:space
="
preserve
">in
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0115-03a
"
xlink:href
="
note-0115-03
"/>
ipſa b d eſt centrum circuli.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">quare in eadem b d linea erit
<
lb
/>
centrum grauitatis trianguli, & </
s
>
<
s
xml:space
="
preserve
">circuli centrum. </
s
>
<
s
xml:space
="
preserve
">Similiter
<
lb
/>
diuiſa a b bifariam in e, & </
s
>
<
s
xml:space
="
preserve
">ducta c e, oſtendetur in ipſa utrũ
<
lb
/>
que centrum contineri. </
s
>
<
s
xml:space
="
preserve
">ergo ea erunt in puncto, in quo li-
<
lb
/>
neæ b d, c e conueniunt. </
s
>
<
s
xml:space
="
preserve
">trianguli igitur a b c centrum gra
<
lb
/>
uitatis eſt idem, quod circuli centrum.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
1
">
<
figure
xlink:label
="
fig-0115-01
"
xlink:href
="
fig-0115-01a
">
<
image
file
="
0115-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0115-01
"/>
</
figure
>
<
note
position
="
right
"
xlink:label
="
note-0115-01
"
xlink:href
="
note-0115-01a
"
xml:space
="
preserve
">8. primi.</
note
>
<
note
position
="
right
"
xlink:label
="
note-0115-02
"
xlink:href
="
note-0115-02a
"
xml:space
="
preserve
">13. primi.</
note
>
<
note
position
="
right
"
xlink:label
="
note-0115-03
"
xlink:href
="
note-0115-03a
"
xml:space
="
preserve
">corol. p@@
<
lb
/>
mæ tertii</
note
>
</
div
>
<
p
>
<
s
xml:space
="
preserve
">Sit quadratum a b c d in cir-
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0115-02a
"
xlink:href
="
fig-0115-02
"/>
culo deſcriptum: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ducantur
<
lb
/>
a c, b d, quæ conueniant in e. </
s
>
<
s
xml:space
="
preserve
">er-
<
lb
/>
go punctum e eſt centrum gra
<
lb
/>
uitatis quadrati, ex decima eiuſ
<
lb
/>
dem libri Archimedis. </
s
>
<
s
xml:space
="
preserve
">Sed cum
<
lb
/>
omnes anguli ad a b c d recti
<
lb
/>
ſint; </
s
>
<
s
xml:space
="
preserve
">erit a b c femicirculus:
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">
<
anchor
type
="
note
"
xlink:label
="
note-0115-04a
"
xlink:href
="
note-0115-04
"/>
itemq́; </
s
>
<
s
xml:space
="
preserve
">b c d: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">propterea li-
<
lb
/>
neæ a c, b d diametri circuli:</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>