Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < (4) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div199" type="section" level="1" n="65">
          <p>
            <s xml:id="echoid-s2993" xml:space="preserve">
              <pb o="4" file="0119" n="119" rhead="DE CENTRO GRAVIT. SOLID."/>
            o n ipſi a c. </s>
            <s xml:id="echoid-s2994" xml:space="preserve">Quoniam enim triangulorum a b k, a d k, latus
              <lb/>
            b k eſt æquale lateri k d, & </s>
            <s xml:id="echoid-s2995" xml:space="preserve">a k utrique commune; </s>
            <s xml:id="echoid-s2996" xml:space="preserve">anguliq́;
              <lb/>
            </s>
            <s xml:id="echoid-s2997" xml:space="preserve">ad k recti baſis a b baſi a d; </s>
            <s xml:id="echoid-s2998" xml:space="preserve">& </s>
            <s xml:id="echoid-s2999" xml:space="preserve">reliqui anguli reliquis an-
              <lb/>
              <note position="right" xlink:label="note-0119-01" xlink:href="note-0119-01a" xml:space="preserve">8. primi</note>
            gulis æquales erunt. </s>
            <s xml:id="echoid-s3000" xml:space="preserve">eadem quoqueratione oſtendetur b c
              <lb/>
            æqualis c d; </s>
            <s xml:id="echoid-s3001" xml:space="preserve">& </s>
            <s xml:id="echoid-s3002" xml:space="preserve">a b ipſi
              <lb/>
              <figure xlink:label="fig-0119-01" xlink:href="fig-0119-01a" number="75">
                <image file="0119-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0119-01"/>
              </figure>
            b c. </s>
            <s xml:id="echoid-s3003" xml:space="preserve">quare omnes a b,
              <lb/>
            b c, c d, d a ſunt æqua-
              <lb/>
            les. </s>
            <s xml:id="echoid-s3004" xml:space="preserve">& </s>
            <s xml:id="echoid-s3005" xml:space="preserve">quoniam anguli
              <lb/>
            ad a æquales ſunt angu
              <lb/>
            lis ad c; </s>
            <s xml:id="echoid-s3006" xml:space="preserve">erunt anguli b
              <lb/>
            a c, a c d coalterni inter
              <lb/>
            ſe æquales; </s>
            <s xml:id="echoid-s3007" xml:space="preserve">itemq́; </s>
            <s xml:id="echoid-s3008" xml:space="preserve">d a c,
              <lb/>
            a c b. </s>
            <s xml:id="echoid-s3009" xml:space="preserve">ergo c d ipſi b a;
              <lb/>
            </s>
            <s xml:id="echoid-s3010" xml:space="preserve">& </s>
            <s xml:id="echoid-s3011" xml:space="preserve">a d ipſi b c æquidi-
              <lb/>
            ſtat. </s>
            <s xml:id="echoid-s3012" xml:space="preserve">Atuero cum lineæ
              <lb/>
            a b, c d inter ſe æquidi-
              <lb/>
            ſtantes bifariam ſecen-
              <lb/>
            tur in punctis e g; </s>
            <s xml:id="echoid-s3013" xml:space="preserve">erit li
              <lb/>
            nea l e k g n diameter ſe
              <lb/>
            ctionis, & </s>
            <s xml:id="echoid-s3014" xml:space="preserve">linea una, ex
              <lb/>
            demonſtratis in uigeſi-
              <lb/>
            ma octaua ſecundi coni
              <lb/>
            corum. </s>
            <s xml:id="echoid-s3015" xml:space="preserve">Et eadem ratione linea una m f k h o. </s>
            <s xml:id="echoid-s3016" xml:space="preserve">Sunt autẽ a d,
              <lb/>
            b c inter ſe ſe æquales, & </s>
            <s xml:id="echoid-s3017" xml:space="preserve">æquidiſtantes. </s>
            <s xml:id="echoid-s3018" xml:space="preserve">quare & </s>
            <s xml:id="echoid-s3019" xml:space="preserve">earum di-
              <lb/>
            midiæ a h, b f; </s>
            <s xml:id="echoid-s3020" xml:space="preserve">itemq́; </s>
            <s xml:id="echoid-s3021" xml:space="preserve">h d, f e; </s>
            <s xml:id="echoid-s3022" xml:space="preserve">& </s>
            <s xml:id="echoid-s3023" xml:space="preserve">quæ ipſas coniunguntrectæ
              <lb/>
              <note position="right" xlink:label="note-0119-02" xlink:href="note-0119-02a" xml:space="preserve">33. primit</note>
            lineæ æquales, & </s>
            <s xml:id="echoid-s3024" xml:space="preserve">æquidiſtantes erunt. </s>
            <s xml:id="echoid-s3025" xml:space="preserve">æquidiſtãt igitur b a,
              <lb/>
            c d diametro m o: </s>
            <s xml:id="echoid-s3026" xml:space="preserve">& </s>
            <s xml:id="echoid-s3027" xml:space="preserve">pariter a d, b c ipſi l n æquidiſtare o-
              <lb/>
            ſtendemus. </s>
            <s xml:id="echoid-s3028" xml:space="preserve">Si igitur manẽte diametro a c intelligatur a b c
              <lb/>
            portio ellipſis ad portionem a d c moueri, cum primum b
              <lb/>
            applicuerit ad d, cõgruet tota portio toti portioni, lineaq́;
              <lb/>
            </s>
            <s xml:id="echoid-s3029" xml:space="preserve">b a lineæ a d; </s>
            <s xml:id="echoid-s3030" xml:space="preserve">& </s>
            <s xml:id="echoid-s3031" xml:space="preserve">b c ipſi c d congruet: </s>
            <s xml:id="echoid-s3032" xml:space="preserve">punctum uero e ca-
              <lb/>
            det in h; </s>
            <s xml:id="echoid-s3033" xml:space="preserve">f in g: </s>
            <s xml:id="echoid-s3034" xml:space="preserve">& </s>
            <s xml:id="echoid-s3035" xml:space="preserve">linea k e in lineam k h: </s>
            <s xml:id="echoid-s3036" xml:space="preserve">& </s>
            <s xml:id="echoid-s3037" xml:space="preserve">k f in k g. </s>
            <s xml:id="echoid-s3038" xml:space="preserve">qua
              <lb/>
            re & </s>
            <s xml:id="echoid-s3039" xml:space="preserve">el in h o, et fm in g n. </s>
            <s xml:id="echoid-s3040" xml:space="preserve">Atipſa lz in z o; </s>
            <s xml:id="echoid-s3041" xml:space="preserve">et m φ in φ n
              <lb/>
            cadet. </s>
            <s xml:id="echoid-s3042" xml:space="preserve">congruet igitur triangulum l k z triangulo o k z: </s>
            <s xml:id="echoid-s3043" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>