Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div206" type="section" level="1" n="68">
          <p>
            <s xml:id="echoid-s3149" xml:space="preserve">
              <pb file="0124" n="124" rhead="FED. COMMANDINI"/>
            in linea e b punctũ g, it aut ſit g e æqualis e f. </s>
            <s xml:id="echoid-s3150" xml:space="preserve">erit g por-
              <lb/>
            tionis a b c centrum. </s>
            <s xml:id="echoid-s3151" xml:space="preserve">nam ſi hæ portiones, quæ æquales
              <lb/>
            & </s>
            <s xml:id="echoid-s3152" xml:space="preserve">ſimiles ſunt, inter ſe ſe aptentur, ita ut b e cadat in d e,
              <lb/>
            & </s>
            <s xml:id="echoid-s3153" xml:space="preserve">punctum b in d cadet, & </s>
            <s xml:id="echoid-s3154" xml:space="preserve">g in f: </s>
            <s xml:id="echoid-s3155" xml:space="preserve">figuris autem æquali-
              <lb/>
            bus, & </s>
            <s xml:id="echoid-s3156" xml:space="preserve">ſimilibus inter ſe aptatis, centra quoque grauitatis
              <lb/>
            ipſarum inter ſe aptata erunt, ex quinta petitione Archi-
              <lb/>
            medis in libro de centro grauitatis planorum. </s>
            <s xml:id="echoid-s3157" xml:space="preserve">Quare cum
              <lb/>
            portionis a d c centrum grauitatis ſit ſ: </s>
            <s xml:id="echoid-s3158" xml:space="preserve">& </s>
            <s xml:id="echoid-s3159" xml:space="preserve">portionis
              <lb/>
            a b c centrum g: </s>
            <s xml:id="echoid-s3160" xml:space="preserve">magnitudinis; </s>
            <s xml:id="echoid-s3161" xml:space="preserve">quæ ex utriſque efficitur:
              <lb/>
            </s>
            <s xml:id="echoid-s3162" xml:space="preserve">hoc eſt circuli uel ellipſis grauitatis centrum in medio li-
              <lb/>
            neæ f g, quod eſt e, conſiſtet, ex quarta propoſitione eiuſ-
              <lb/>
            dem libri Archimedis. </s>
            <s xml:id="echoid-s3163" xml:space="preserve">ergo circuli, uel ellipſis centrum
              <lb/>
            grauitatis eſt idem, quod figuræ centrum. </s>
            <s xml:id="echoid-s3164" xml:space="preserve">atque illud eſt,
              <lb/>
            quod demonſtrare oportebat.</s>
            <s xml:id="echoid-s3165" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3166" xml:space="preserve">Ex quibus ſequitur portionis circuli, uel ellip-
              <lb/>
            ſis, quæ dimidia maior ſit, centrum grauitatis in
              <lb/>
            diametro quoque ipſius conſiſtere.</s>
            <s xml:id="echoid-s3167" xml:space="preserve"/>
          </p>
          <figure number="81">
            <image file="0124-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0124-01"/>
          </figure>
          <p>
            <s xml:id="echoid-s3168" xml:space="preserve">Sit enim maior portio a b c, cu_i_us diameter b d, & </s>
            <s xml:id="echoid-s3169" xml:space="preserve">com-
              <lb/>
            pleatur circulus, uel ellipſis, ut portio reliqua ſit a e c, </s>
          </p>
        </div>
      </text>
    </echo>