Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < (13) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <p>
            <s xml:id="echoid-s3469" xml:space="preserve">
              <pb o="13" file="0137" n="137" rhead="DE CENTRO GRAVIT. SOLID."/>
            trianguli g h K, & </s>
            <s xml:id="echoid-s3470" xml:space="preserve">ipſius ρ τ axis medium.</s>
            <s xml:id="echoid-s3471" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3472" xml:space="preserve">Sit priſma a g, cuius oppoſita plana ſint quadrilatera
              <lb/>
            a b c d, e f g h: </s>
            <s xml:id="echoid-s3473" xml:space="preserve">ſecenturq; </s>
            <s xml:id="echoid-s3474" xml:space="preserve">a e, b f, c g, d h bifariam: </s>
            <s xml:id="echoid-s3475" xml:space="preserve">& </s>
            <s xml:id="echoid-s3476" xml:space="preserve">per di-
              <lb/>
            uiſiones planum ducatur; </s>
            <s xml:id="echoid-s3477" xml:space="preserve">quod ſectionem faciat quadrila-
              <lb/>
            terum _K_ l m n. </s>
            <s xml:id="echoid-s3478" xml:space="preserve">Deinde iuncta a c per lineas a c, a e ducatur
              <lb/>
            planum ſecãs priſma, quod ipſum diuidet in duo priſmata
              <lb/>
            triangulares baſes habentia a b c e f g, a d c e h g. </s>
            <s xml:id="echoid-s3479" xml:space="preserve">Sint autẽ
              <lb/>
            triangulorum a b c, e f g gra-
              <lb/>
              <figure xlink:label="fig-0137-01" xlink:href="fig-0137-01a" number="92">
                <image file="0137-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0137-01"/>
              </figure>
            uitatis centra o p: </s>
            <s xml:id="echoid-s3480" xml:space="preserve">& </s>
            <s xml:id="echoid-s3481" xml:space="preserve">triangu-
              <lb/>
            lorum a d c, e h g centra q r:
              <lb/>
            </s>
            <s xml:id="echoid-s3482" xml:space="preserve">iunganturq; </s>
            <s xml:id="echoid-s3483" xml:space="preserve">o p, q r; </s>
            <s xml:id="echoid-s3484" xml:space="preserve">quæ pla-
              <lb/>
            no _k_ l m n occurrant in pun-
              <lb/>
            ctis s t. </s>
            <s xml:id="echoid-s3485" xml:space="preserve">erit ex iis, quæ demon
              <lb/>
            ſtrauimus, punctum s grauita
              <lb/>
            tis centrum trianguli k l m; </s>
            <s xml:id="echoid-s3486" xml:space="preserve">& </s>
            <s xml:id="echoid-s3487" xml:space="preserve">
              <lb/>
            ipſius priſmatis a b c e f g: </s>
            <s xml:id="echoid-s3488" xml:space="preserve">pun
              <lb/>
            ctum uero t centrum grauita
              <lb/>
            tis trianguli _K_ n m, & </s>
            <s xml:id="echoid-s3489" xml:space="preserve">priſma-
              <lb/>
            tis a d c, e h g. </s>
            <s xml:id="echoid-s3490" xml:space="preserve">iunctis igitur
              <lb/>
            o q, p r, s t, erit in linea o q cẽ
              <lb/>
            trum grauitatis quadrilateri
              <lb/>
            a b c d, quod ſit u: </s>
            <s xml:id="echoid-s3491" xml:space="preserve">& </s>
            <s xml:id="echoid-s3492" xml:space="preserve">in linea
              <lb/>
            p r cẽtrum quadrilateri e f g h
              <lb/>
            ſit autem x. </s>
            <s xml:id="echoid-s3493" xml:space="preserve">deniqueiungatur
              <lb/>
            u x, quæ ſecet lineam ſ t in y. </s>
            <s xml:id="echoid-s3494" xml:space="preserve">ſe
              <lb/>
            cabit enim cum ſint in eodem
              <lb/>
              <note position="right" xlink:label="note-0137-01" xlink:href="note-0137-01a" xml:space="preserve">5. huius.</note>
            plano: </s>
            <s xml:id="echoid-s3495" xml:space="preserve">atq; </s>
            <s xml:id="echoid-s3496" xml:space="preserve">erit y grauitatis centrum quadril ateri _K_ lm n.
              <lb/>
            </s>
            <s xml:id="echoid-s3497" xml:space="preserve">Dico idem punctum y centrum quoque gra uitatis eſſe to-
              <lb/>
            tius priſmatis. </s>
            <s xml:id="echoid-s3498" xml:space="preserve">Quoniam enim quadri lateri k lm n graui-
              <lb/>
            tatis centrum eſt y: </s>
            <s xml:id="echoid-s3499" xml:space="preserve">linea s y ad y t eandem proportionem
              <lb/>
            habebit, quam triangulum k n m ad triangulum k lm, ex 8
              <lb/>
            Archimedis de centro grauitatis planorum. </s>
            <s xml:id="echoid-s3500" xml:space="preserve">Vtautem triã
              <lb/>
            gulum k n m ad ipſum k l m, hoc eſt ut triangulum a d c ad
              <lb/>
            triangulum a b c, æqualia enim ſunt, ita priſina a d c e h </s>
          </p>
        </div>
      </text>
    </echo>