Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
121
5
122
123
6
124
125
7
126
127
8
128
129
9
130
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div234
"
type
="
section
"
level
="
1
"
n
="
80
">
<
pb
file
="
0154
"
n
="
154
"
rhead
="
FED. COMMANDINI
"/>
</
div
>
<
div
xml:id
="
echoid-div235
"
type
="
section
"
level
="
1
"
n
="
81
">
<
head
xml:id
="
echoid-head88
"
xml:space
="
preserve
">THE OREMA XII. PROPOSITIO XVI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3850
"
xml:space
="
preserve
">In ſphæra, & </
s
>
<
s
xml:id
="
echoid-s3851
"
xml:space
="
preserve
">ſphæroide idem eſt grauitatis, & </
s
>
<
s
xml:id
="
echoid-s3852
"
xml:space
="
preserve
">
<
lb
/>
figuræ centrum.</
s
>
<
s
xml:id
="
echoid-s3853
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3854
"
xml:space
="
preserve
">Secetur ſphæra, uel ſphæroid
<
gap
/>
no per axem ducto;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3855
"
xml:space
="
preserve
">quod ſectionem faciat circulum,
<
gap
/>
ellipſim a b c d, cuius
<
lb
/>
diameter, & </
s
>
<
s
xml:id
="
echoid-s3856
"
xml:space
="
preserve
">ſphæræ, uelſphæroidis axis d b; </
s
>
<
s
xml:id
="
echoid-s3857
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3858
"
xml:space
="
preserve
">centrume. </
s
>
<
s
xml:id
="
echoid-s3859
"
xml:space
="
preserve
">
<
lb
/>
Dico e grauitatis etiam centrum eſſe. </
s
>
<
s
xml:id
="
echoid-s3860
"
xml:space
="
preserve
">ſecetur enim altero
<
lb
/>
plano per e, ad planum ſecans recto, cuius fectio ſit circu-
<
lb
/>
lus circa diametrum a c. </
s
>
<
s
xml:id
="
echoid-s3861
"
xml:space
="
preserve
">erunt a d c, a b c dimidiæ portio-
<
lb
/>
nes ſphæræ, uel fphæroidis. </
s
>
<
s
xml:id
="
echoid-s3862
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3863
"
xml:space
="
preserve
">quoniam portionis a d c gra
<
lb
/>
uitatis centrum eſt in linea d, & </
s
>
<
s
xml:id
="
echoid-s3864
"
xml:space
="
preserve
">centrum portionis a b c in
<
lb
/>
ipſa b e; </
s
>
<
s
xml:id
="
echoid-s3865
"
xml:space
="
preserve
">totius ſphæræ, uel ſphæroidis grauitatis centrum
<
lb
/>
in axe d b conſiſtet. </
s
>
<
s
xml:id
="
echoid-s3866
"
xml:space
="
preserve
">Quòd ſi portionis a d c centrum graui
<
lb
/>
tatis ponatur eſſe f. </
s
>
<
s
xml:id
="
echoid-s3867
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3868
"
xml:space
="
preserve
">fiat ipſi f e æqualis e g: </
s
>
<
s
xml:id
="
echoid-s3869
"
xml:space
="
preserve
">punctũ g por
<
lb
/>
<
figure
xlink:label
="
fig-0154-01
"
xlink:href
="
fig-0154-01a
"
number
="
107
">
<
image
file
="
0154-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0154-01
"/>
</
figure
>
tionis a b c centrum erit. </
s
>
<
s
xml:id
="
echoid-s3870
"
xml:space
="
preserve
">ſolidis enim figuris ſimilibus & </
s
>
<
s
xml:id
="
echoid-s3871
"
xml:space
="
preserve
">
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0154-01
"
xlink:href
="
note-0154-01a
"
xml:space
="
preserve
">per 2. pe-
<
lb
/>
titionem</
note
>
æqualibus inter ſe aptatis, & </
s
>
<
s
xml:id
="
echoid-s3872
"
xml:space
="
preserve
">centra grauitatis ipſarum in-
<
lb
/>
ter fe aptentur neceſſe eſt. </
s
>
<
s
xml:id
="
echoid-s3873
"
xml:space
="
preserve
">ex quo fit, ut magnitudinis, quæ
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0154-02
"
xlink:href
="
note-0154-02a
"
xml:space
="
preserve
">4 Arch-
<
lb
/>
medis.</
note
>
ex utriſque cõſtat, hoc eſt ipſius ſphæræ, uel ſphæroidis gra
<
lb
/>
uitatis centrum ſitin medio lineæ f g, uidelicet in e. </
s
>
<
s
xml:id
="
echoid-s3874
"
xml:space
="
preserve
">Sphæ-
<
lb
/>
ræ igitur, uel ſphæroidis grauitatis centrum eſtidem, quod
<
lb
/>
centrum figuræ.</
s
>
<
s
xml:id
="
echoid-s3875
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>