Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
121
5
122
123
6
124
125
7
126
127
8
128
129
9
130
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(22)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div235
"
type
="
section
"
level
="
1
"
n
="
81
">
<
pb
o
="
22
"
file
="
0155
"
n
="
155
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
<
p
>
<
s
xml:id
="
echoid-s3876
"
xml:space
="
preserve
">Ex demonſtratis perſpicue apparet, portioni
<
lb
/>
ſphæræ uel ſphæroidis, quæ dimidia maior eſt, cẽ
<
lb
/>
trum grauitatis in axe conſiſtere.</
s
>
<
s
xml:id
="
echoid-s3877
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3878
"
xml:space
="
preserve
">Data enim
<
lb
/>
<
figure
xlink:label
="
fig-0155-01
"
xlink:href
="
fig-0155-01a
"
number
="
108
">
<
image
file
="
0155-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0155-01
"/>
</
figure
>
qualibet maio
<
lb
/>
ri portiõe, quo
<
lb
/>
niã totius ſphæ
<
lb
/>
ræ, uel ſphæroi
<
lb
/>
dis grauitatis
<
lb
/>
centrum eſt in
<
lb
/>
axe; </
s
>
<
s
xml:id
="
echoid-s3879
"
xml:space
="
preserve
">eſt autem
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3880
"
xml:space
="
preserve
">in axe cen-
<
lb
/>
trum portio-
<
lb
/>
nis minoris:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3881
"
xml:space
="
preserve
">reliquæ portionis uidelicet maioris centrum in axe neceſ-
<
lb
/>
ſario conſiſtet.</
s
>
<
s
xml:id
="
echoid-s3882
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div238
"
type
="
section
"
level
="
1
"
n
="
82
">
<
head
xml:id
="
echoid-head89
"
xml:space
="
preserve
">THE OREMA XIII. PROPOSITIO XVII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3883
"
xml:space
="
preserve
">Cuiuslibet pyramidis triã
<
lb
/>
<
figure
xlink:label
="
fig-0155-02
"
xlink:href
="
fig-0155-02a
"
number
="
109
">
<
image
file
="
0155-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0155-02
"/>
</
figure
>
gularem baſim habẽtis gra
<
lb
/>
uitatis centrum eſt in pun-
<
lb
/>
cto, in quo ipſius axes con-
<
lb
/>
ueniunt.</
s
>
<
s
xml:id
="
echoid-s3884
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3885
"
xml:space
="
preserve
">Sit pyramis, cuius baſis trian
<
lb
/>
gulum a b c, axis d e: </
s
>
<
s
xml:id
="
echoid-s3886
"
xml:space
="
preserve
">ſitq; </
s
>
<
s
xml:id
="
echoid-s3887
"
xml:space
="
preserve
">trian
<
lb
/>
guli b d c grauitatis centrum f:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3888
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3889
"
xml:space
="
preserve
">iungatur a f. </
s
>
<
s
xml:id
="
echoid-s3890
"
xml:space
="
preserve
">erit & </
s
>
<
s
xml:id
="
echoid-s3891
"
xml:space
="
preserve
">a faxis eiuſ
<
lb
/>
dem pyramidis ex tertia diffini-
<
lb
/>
tione huius. </
s
>
<
s
xml:id
="
echoid-s3892
"
xml:space
="
preserve
">Itaque quoniam centrum grauitatis eſt in
<
lb
/>
axe d e; </
s
>
<
s
xml:id
="
echoid-s3893
"
xml:space
="
preserve
">eſt autem & </
s
>
<
s
xml:id
="
echoid-s3894
"
xml:space
="
preserve
">in axe a f; </
s
>
<
s
xml:id
="
echoid-s3895
"
xml:space
="
preserve
">quod proxime </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>