Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < (31) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="89">
          <pb o="31" file="0173" n="173" rhead="DE CENTRO GRAVIT. SOLID."/>
          <p>
            <s xml:space="preserve">SIT fruſtum pyramidis a e, cuius maior baſis triangu-
              <lb/>
            lum a b c, minor d e f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">oporteat ipſum plano, quod baſi
              <lb/>
            æquidiſtet, ita ſecare, ut ſectio ſit proportionalis inter triã
              <lb/>
            gula a b c, d e f. </s>
            <s xml:space="preserve">Inueniatur inter lineas a b, d e media pro-
              <lb/>
            portionalis, quæ ſit b g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">à puncto g erigatur g h æquidi-
              <lb/>
            ſtans b e, ſecansq; </s>
            <s xml:space="preserve">a d in h: </s>
            <s xml:space="preserve">deinde per h ducatur planum
              <lb/>
            baſibus æ quidiſtans, cuius ſectio ſit triangulum h _k_ 1. </s>
            <s xml:space="preserve">Dico
              <lb/>
            triangulum h K l proportionale eſſe inter triangula a b c,
              <lb/>
            d e f, hoc eſt triangulum a b c ad
              <lb/>
              <anchor type="figure" xlink:label="fig-0173-01a" xlink:href="fig-0173-01"/>
            triangulum h K l eandem habere
              <lb/>
            proportionem, quam triãgulum
              <lb/>
            h K l ad ipſum d e f. </s>
            <s xml:space="preserve">Quoniã enim
              <lb/>
            lineæ a b, h K æquidiſtantium pla
              <lb/>
              <anchor type="note" xlink:label="note-0173-01a" xlink:href="note-0173-01"/>
            norum ſectiones inter ſe æquidi-
              <lb/>
            ſtant: </s>
            <s xml:space="preserve">atque æquidiſtant b _k_, g h:
              <lb/>
            </s>
            <s xml:space="preserve">linea h _k_ ipſi g b eſt æqualis: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">pro
              <lb/>
              <anchor type="note" xlink:label="note-0173-02a" xlink:href="note-0173-02"/>
            pterea proportionalis inter a b,
              <lb/>
            d e. </s>
            <s xml:space="preserve">quare ut a b ad h K, ita eſt h
              <emph style="sc">K</emph>
              <lb/>
            ad d e. </s>
            <s xml:space="preserve">fiat ut h k ad d e, ita d e
              <lb/>
            ad aliam lineam, in qua ſit m. </s>
            <s xml:space="preserve">erit
              <lb/>
            ex æquali ut a b ad d e, ita h k ad
              <lb/>
            m. </s>
            <s xml:space="preserve">Et quoniam triangula a b c,
              <lb/>
              <anchor type="note" xlink:label="note-0173-03a" xlink:href="note-0173-03"/>
            h K l, d e f ſimilia ſunt; </s>
            <s xml:space="preserve">triangulū
              <lb/>
            a b c ad triangulum h k l eſt, ut li-
              <lb/>
              <anchor type="note" xlink:label="note-0173-04a" xlink:href="note-0173-04"/>
            nea a b ad lineam d e: </s>
            <s xml:space="preserve">triangulũ
              <lb/>
            autem h k l ad ipſum d e f eſt, ut h _k_ ad m. </s>
            <s xml:space="preserve">ergo tríangulum
              <lb/>
              <anchor type="note" xlink:label="note-0173-05a" xlink:href="note-0173-05"/>
            a b c ad triangulum h k l eandem proportionem habet,
              <lb/>
            quam triangulum h K l ad ipſum d e f. </s>
            <s xml:space="preserve">Eodem modo in a-
              <lb/>
            liis fruſtis pyramidis idem demonſtrabitur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0173-01" xlink:href="fig-0173-01a">
              <image file="0173-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0173-01"/>
            </figure>
            <note position="right" xlink:label="note-0173-01" xlink:href="note-0173-01a" xml:space="preserve">16. unde
              <lb/>
            cimi</note>
            <note position="right" xlink:label="note-0173-02" xlink:href="note-0173-02a" xml:space="preserve">34. primi</note>
            <note position="right" xlink:label="note-0173-03" xlink:href="note-0173-03a" xml:space="preserve">9. huius
              <lb/>
            corol.</note>
            <note position="right" xlink:label="note-0173-04" xlink:href="note-0173-04a" xml:space="preserve">20. ſexti</note>
            <note position="right" xlink:label="note-0173-05" xlink:href="note-0173-05a" xml:space="preserve">11. quinti</note>
          </div>
          <p>
            <s xml:space="preserve">Sit fruſtum coni, uel coni portionis a d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſecetur plano
              <lb/>
            per axem, cuius ſectio ſit a b c d, ita ut maior ipſius baſis ſit
              <lb/>
            circulus, uel ellipſis circa diametrum a b; </s>
            <s xml:space="preserve">minor circa c d.
              <lb/>
            </s>
            <s xml:space="preserve">Rurſus inter lineas a b, c d inueniatur proportionalis b e: </s>
            <s xml:space="preserve">
              <lb/>
            & </s>
            <s xml:space="preserve">ab e ducta e ſ æquid_i_ſtante b d, quæ lineam c a in f ſecet,</s>
          </p>
        </div>
      </text>
    </echo>