Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < (42) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="55">
          <p style="it">
            <s xml:space="preserve">
              <pb o="42" file="0095" n="95" rhead="DE IIS QVAE VEH. IN AQVA."/>
            clinata, ut baſis humidum non contingat, ſectur plano per axem,
              <lb/>
            recto ad ſuperficiem humidi, ut ſectio ſit a m o l rectanguli coni ſe-
              <lb/>
            ctio: </s>
            <s xml:space="preserve">ſuperficiei humidi ſectio ſit i o: </s>
            <s xml:space="preserve">axis portionis, & </s>
            <s xml:space="preserve">ſectionis
              <lb/>
            diameter b d; </s>
            <s xml:space="preserve">quæ in eaſdem, quas diximus, partes ſecetur: </s>
            <s xml:space="preserve">duca-
              <lb/>
            turq; </s>
            <s xml:space="preserve">m n quidem ipſi i o æquidiſtans, ut in puncto m ſectionem
              <lb/>
            cótingat: </s>
            <s xml:space="preserve">mt uero æquidiſtans ipſi b d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">m s ad eandem perpen
              <lb/>
            dicularis. </s>
            <s xml:space="preserve">Demonſtrandum eſt non manere portionem, ſed inclinari
              <lb/>
            ita, ut in uno puncto contingat ſuperficiem humidi. </s>
            <s xml:space="preserve">ducatur enim p c
              <lb/>
            ad ipſam b d perpendicularis: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iuncta a f uſque ad ſectionem
              <lb/>
            producatur in q: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per p ducatur p φ ipſi a q æquidiſtans. </s>
            <s xml:space="preserve">erunt
              <lb/>
            iam ex ijs, quæ demonſtrauimus a f, f q inter ſe ſe æquales. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">cum
              <lb/>
            portio ad humi-
              <lb/>
              <anchor type="figure" xlink:label="fig-0095-01a" xlink:href="fig-0095-01"/>
            dum eam in gra-
              <lb/>
            uitate proportio
              <lb/>
            nem habeat, quá
              <lb/>
            quadratú p f ad
              <lb/>
            b d quadratum:
              <lb/>
            </s>
            <s xml:space="preserve">atque eandem ha
              <lb/>
            beat portio ipſi-
              <lb/>
            us demerſa ad to
              <lb/>
            tam portionem; </s>
            <s xml:space="preserve">
              <lb/>
            hoc eſt quadratú
              <lb/>
            m t ad quadratú
              <lb/>
              <anchor type="note" xlink:label="note-0095-01a" xlink:href="note-0095-01"/>
            b d: </s>
            <s xml:space="preserve">erit quadra
              <lb/>
            tum m t quadra-
              <lb/>
            to p f æquale: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            idcirco linea m t
              <lb/>
            æqualis lmeæ p
              <lb/>
            f. </s>
            <s xml:space="preserve">Itaque quoniam in portionibus æqualibus, & </s>
            <s xml:space="preserve">ſimilibus a p q l, a
              <lb/>
            m o l ductæ ſunt lineæ a q, i o, quæ æquales portiones abſcindunt;
              <lb/>
            </s>
            <s xml:space="preserve">illa quidem ab extremitate baſis; </s>
            <s xml:space="preserve">hæc uero non ab extremitate: </s>
            <s xml:space="preserve">ſe-
              <lb/>
            quitur ut a q, quæ ab extremitate ducitur, minorem acutum angulú
              <lb/>
            contineat cum diametro portionis, quàm ipſa i o. </s>
            <s xml:space="preserve">Sed linea p φ li-
              <lb/>
            neæ a q æquidiſtat, & </s>
            <s xml:space="preserve">m n ipſi i o. </s>
            <s xml:space="preserve">angulus igitur ad φ angulo ad n</s>
          </p>
        </div>
      </text>
    </echo>