Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
< >
page |< < (27) of 213 > >|
16527DE CENTRO GRAVIT. SOLID. proportionem habet, quam baſis a b c d ad baſim g h k l:
ſi enim intelligantur duæ pyramides a b c d e, g h k l m, ha-
bebunt hæ inter ſe proportionem eandem, quam ipſarum
baſes ex ſexta duodecimi elementorum.
Sed ut baſis a b c d
ad g h K l baſim, ita linea o ad lineam p;
hoc eſt ad lineam q
ei æqualem.
ergo priſma a e ad priſma g m eſt, ut linea o
ad lineam q.
proportio autem o ad q cõpoſita eſt ex pro-
portione o ad p, &
ex proportione p ad q. quare priſma
a e ad priſma g m, &
idcirco pyramis a b c d e, ad pyrami-
dem g h K l m proportionem habet ex eiſdem proportio-
nibus compoſitam, uidelicet ex proportione baſis a b c d
ad baſim g h _K_ l, &
ex proportione altitudinis e f ad m n al
titudinem.
Quòd ſi lineæ e f, m n inæquales ponantur, ſit
e f minor:
& ut e f ad m n, ita fiat linea p ad lineam u: de
121[Figure 121] inde ab ipſa m n abſcindatur r n æqualis e f:
& per r duca-
tur planum, quod oppoſitis planis æquidiſtans faciat ſe-
ctionem s t.
erit priſma a e, ad priſma g t, ut baſis a b c d
ad baſim g h k l;
hoc eſt ut o ad p: ut autem priſma g t ad
priſma g m, ita altitudo r n;
hoc eſt e f ad altitudinẽ m n;
1120. huius uidelicet linea p ad lineam u. ergo ex æquali priſma a e ad
priſma g m eſt, ut linea o ad ipſam u.
Sed proportio o ad
u cõpoſita eſt ex proportione o ad p, quæ eſt baſis a b c d
ad baſim g h k l;
& ex proportione p ad u, quæ eſt altitudi-
nis e f ad altitudinem m n.
priſma igitur a e ad priſma g

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index